What is the slope of the line that contains the points [tex]$(-3,-1)$[/tex] and [tex]$(3,3)$[/tex]?

A. Undefined
B. 0
C. [tex]$\frac{2}{3}$[/tex]
D. [tex]$\frac{3}{2}$[/tex]



Answer :

To find the slope of the line that passes through the points [tex]\((-3, -1)\)[/tex] and [tex]\( (3, 3) \)[/tex], we use the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, the coordinates of the points are:
[tex]\( (x_1, y_1) = (-3, -1) \)[/tex]
[tex]\( (x_2, y_2) = (3, 3) \)[/tex]

Substituting these values into the slope formula, we get:

[tex]\[ \text{slope} = \frac{3 - (-1)}{3 - (-3)} \][/tex]

Simplify the expressions inside the numerator and the denominator:

[tex]\[ \text{slope} = \frac{3 + 1}{3 + 3} \][/tex]
[tex]\[ \text{slope} = \frac{4}{6} \][/tex]

Reduce the fraction to its simplest form:

[tex]\[ \text{slope} = \frac{2}{3} \][/tex]

So, the slope of the line that contains the points [tex]\((-3, -1)\)[/tex] and [tex]\( (3, 3) \)[/tex] is:

[tex]\[ \boxed{\frac{2}{3}} \][/tex]