Type the correct answer in the box.

If the measure of angle [tex]$\theta$[/tex] is [tex]$\frac{7 \pi}{6}$[/tex], the equivalent measurement in degrees is [tex]$\square$[/tex].



Answer :

To convert an angle measurement from radians to degrees, we use the conversion factor that [tex]\(180\)[/tex] degrees is equivalent to [tex]\(\pi\)[/tex] radians. Hence, the formula to convert radians to degrees is:

[tex]\[ \text{Degrees} = \text{Radians} \times \left(\frac{180}{\pi}\right) \][/tex]

Given the angle [tex]\(\theta\)[/tex] in radians:

[tex]\[ \theta = \frac{7\pi}{6} \][/tex]

We substitute the given value of [tex]\(\theta\)[/tex] into the formula:

[tex]\[ \theta_{\text{degrees}} = \frac{7 \pi}{6} \times \left(\frac{180}{\pi}\right) \][/tex]

Notice that [tex]\(\pi\)[/tex] in the numerator and denominator cancels out:

[tex]\[ \theta_{\text{degrees}} = \frac{7 \times 180}{6} \][/tex]

Now, perform the multiplication and division:

[tex]\[ \theta_{\text{degrees}} = \frac{1260}{6} \][/tex]

Finally, divide [tex]\(1260\)[/tex] by [tex]\(6\)[/tex]:

[tex]\[ \theta_{\text{degrees}} = 210 \][/tex]

Therefore, the equivalent measurement of [tex]\(\theta\)[/tex] in degrees is:

[tex]\[ 210 \][/tex]