Answer :
Alright, let's classify and simplify each of the given polynomials by combining like terms. Follow the steps below to obtain the simplified forms.
### Polynomial 1: [tex]\(2x - x^2 + 4x + x^2\)[/tex]
1. Identify and combine like terms:
[tex]\[ 2x + 4x + (-x^2) + x^2 \][/tex]
2. Combine the coefficients of [tex]\(x\)[/tex]:
[tex]\[ (2 + 4)x = 6x \][/tex]
3. Combine the coefficients of [tex]\(x^2\)[/tex]:
[tex]\[ (-1 + 1)x^2 = 0x^2 = 0 \][/tex]
4. The simplified polynomial is:
[tex]\[ 6x \][/tex]
### Polynomial 2: [tex]\(x^3 - 5x^2 + 3 - 2\)[/tex]
1. Identify and combine like terms:
[tex]\[ x^3 + (-5x^2) + (3 - 2) \][/tex]
2. Simplify the constant terms:
[tex]\[ 3 - 2 = 1 \][/tex]
3. The simplified polynomial is:
[tex]\[ x^3 - 5x^2 + 1 \][/tex]
### Polynomial 3: [tex]\(x^3 - x^3 + x^2 - x^2 + 3\)[/tex]
1. Identify and combine like terms:
[tex]\[ (x^3 - x^3) + (x^2 - x^2) + 3 \][/tex]
2. Combine the coefficients of [tex]\(x^3\)[/tex]:
[tex]\[ x^3 - x^3 = 0 \][/tex]
3. Combine the coefficients of [tex]\(x^2\)[/tex]:
[tex]\[ x^2 - x^2 = 0 \][/tex]
4. The simplified polynomial is:
[tex]\[ 0 + 0 + 3 = 3 \][/tex]
### Polynomial 4: [tex]\(7x - x^2 + x^3 + 4x^2\)[/tex]
1. Identify and combine like terms:
[tex]\[ 7x + (-x^2 + 4x^2) + x^3 \][/tex]
2. Combine the coefficients of [tex]\(x^2\)[/tex]:
[tex]\[ -x^2 + 4x^2 = 3x^2 \][/tex]
3. The simplified polynomial is:
[tex]\[ x^3 + 3x^2 + 7x \][/tex]
### Polynomial 5: [tex]\(-6x - x^3 + 6x - 4x\)[/tex]
1. Identify and combine like terms:
[tex]\[ -6x + 6x - 4x - x^3 \][/tex]
2. Combine the coefficients of [tex]\(x\)[/tex]:
[tex]\[ (-6 + 6 - 4)x = -4x \][/tex]
3. The simplified polynomial is:
[tex]\[ -x^3 - 4x \][/tex]
So, after combining like terms, the classified polynomials are:
[tex]\[ \begin{array}{c} 6x \\ x^3 - 5x^2 + 1 \\ 3 \\ x^3 + 3x^2 + 7x \\ -x^3 - 4x \\ \end{array} \][/tex]
### Polynomial 1: [tex]\(2x - x^2 + 4x + x^2\)[/tex]
1. Identify and combine like terms:
[tex]\[ 2x + 4x + (-x^2) + x^2 \][/tex]
2. Combine the coefficients of [tex]\(x\)[/tex]:
[tex]\[ (2 + 4)x = 6x \][/tex]
3. Combine the coefficients of [tex]\(x^2\)[/tex]:
[tex]\[ (-1 + 1)x^2 = 0x^2 = 0 \][/tex]
4. The simplified polynomial is:
[tex]\[ 6x \][/tex]
### Polynomial 2: [tex]\(x^3 - 5x^2 + 3 - 2\)[/tex]
1. Identify and combine like terms:
[tex]\[ x^3 + (-5x^2) + (3 - 2) \][/tex]
2. Simplify the constant terms:
[tex]\[ 3 - 2 = 1 \][/tex]
3. The simplified polynomial is:
[tex]\[ x^3 - 5x^2 + 1 \][/tex]
### Polynomial 3: [tex]\(x^3 - x^3 + x^2 - x^2 + 3\)[/tex]
1. Identify and combine like terms:
[tex]\[ (x^3 - x^3) + (x^2 - x^2) + 3 \][/tex]
2. Combine the coefficients of [tex]\(x^3\)[/tex]:
[tex]\[ x^3 - x^3 = 0 \][/tex]
3. Combine the coefficients of [tex]\(x^2\)[/tex]:
[tex]\[ x^2 - x^2 = 0 \][/tex]
4. The simplified polynomial is:
[tex]\[ 0 + 0 + 3 = 3 \][/tex]
### Polynomial 4: [tex]\(7x - x^2 + x^3 + 4x^2\)[/tex]
1. Identify and combine like terms:
[tex]\[ 7x + (-x^2 + 4x^2) + x^3 \][/tex]
2. Combine the coefficients of [tex]\(x^2\)[/tex]:
[tex]\[ -x^2 + 4x^2 = 3x^2 \][/tex]
3. The simplified polynomial is:
[tex]\[ x^3 + 3x^2 + 7x \][/tex]
### Polynomial 5: [tex]\(-6x - x^3 + 6x - 4x\)[/tex]
1. Identify and combine like terms:
[tex]\[ -6x + 6x - 4x - x^3 \][/tex]
2. Combine the coefficients of [tex]\(x\)[/tex]:
[tex]\[ (-6 + 6 - 4)x = -4x \][/tex]
3. The simplified polynomial is:
[tex]\[ -x^3 - 4x \][/tex]
So, after combining like terms, the classified polynomials are:
[tex]\[ \begin{array}{c} 6x \\ x^3 - 5x^2 + 1 \\ 3 \\ x^3 + 3x^2 + 7x \\ -x^3 - 4x \\ \end{array} \][/tex]