Solve for [tex]$q$[/tex] in terms of [tex]$r$[/tex], [tex][tex]$s$[/tex][/tex], and [tex]$t$[/tex].

[tex]\[
\begin{array}{l}
r=\frac{1}{2} s(t+q) \\
q=\square
\end{array}
\][/tex]



Answer :

To solve for [tex]\( q \)[/tex] in the equation

[tex]\[ r = \frac{1}{2} s (t + q), \][/tex]

we can follow these steps:

1. Isolate the term containing [tex]\( q \)[/tex]: Start by clearing the fraction to make the equation easier to work with. We multiply both sides of the equation by 2:

[tex]\[ 2r = s (t + q). \][/tex]

2. Expand the right-hand side: Distribute [tex]\( s \)[/tex] on the right-hand side:

[tex]\[ 2r = st + sq. \][/tex]

3. Isolate [tex]\( q \)[/tex]: We need to get [tex]\( q \)[/tex] alone on one side of the equation. First, subtract [tex]\( st \)[/tex] from both sides to move the [tex]\( st \)[/tex] terms to the left:

[tex]\[ 2r - st = sq. \][/tex]

4. Solve for [tex]\( q \)[/tex]: Divide both sides of the equation by [tex]\( s \)[/tex] to isolate [tex]\( q \)[/tex]:

[tex]\[ q = \frac{2r - st}{s}. \][/tex]

Therefore, the solution for [tex]\( q \)[/tex] in terms of [tex]\( r \)[/tex], [tex]\( s \)[/tex], and [tex]\( t \)[/tex] is

[tex]\[ q = \frac{2r}{s} - t. \][/tex]