Answer :
To solve the equation [tex]\( 2 \sin ^2 \left(\frac{\pi^c}{4} - A\right) = \frac{(1 - \tan A)^2}{1 + \tan A} \)[/tex] for [tex]\( c \)[/tex], let's proceed step-by-step.
### Step 1: Simplify the Right-Hand Side
We start by rewriting the right-hand side of the equation:
[tex]\[ \frac{(1 - \tan A)^2}{1 + \tan A} \][/tex]
First, calculate [tex]\((1 - \tan A)^2\)[/tex]:
[tex]\[ (1 - \tan A)^2 = 1 - 2 \tan A + \tan^2 A \][/tex]
So, the right-hand side becomes:
[tex]\[ \frac{1 - 2 \tan A + \tan^2 A}{1 + \tan A} \][/tex]
### Step 2: Analyze the Left-Hand Side
The left-hand side of the equation is already in a fairly simple form:
[tex]\[ 2 \sin^2 \left(\frac{\pi^c}{4} - A\right) \][/tex]
### Step 3: Juggle Trigonometric Identities
To simplify the left-hand side, we recall the trigonometric identity for double angles and sine squared:
[tex]\[ \sin^2 x = \frac{1 - \cos(2x)}{2} \][/tex]
For the arguments, let:
[tex]\[ x = \frac{\pi^c}{4} - A \][/tex]
Then, we have:
[tex]\[ 2 \sin^2 \left( \frac{\pi^c}{4} - A \right) = 2 \cdot \frac{1 - \cos(2 \left( \frac{\pi^c}{4} - A \right))}{2} = 1 - \cos \left( \frac{\pi^c}{2} - 2A \right) \][/tex]
### Step 4: Equate and Solve
Now, equate the simplified left-hand side with the right-hand side:
[tex]\[ 1 - \cos \left( \frac{\pi^c}{2} - 2A \right) = \frac{1 - 2 \tan A + \tan^2 A}{1 + \tan A} \][/tex]
### Step 5: Solve [tex]\( \cos(\cdots) \)[/tex]
First, note the special trick: Let's test with some specific values for [tex]\( A \)[/tex]. Consider [tex]\( A = 0 \)[/tex]:
[tex]\[ 1 - \cos \left( \frac{\pi^c}{2} \right) = 1 \][/tex]
This implies:
[tex]\[ \cos \left( \frac{\pi^c}{2} \right) = 0 \][/tex]
The solution for [tex]\( \frac{\pi^c}{2} = \frac{\pi}{2} \)[/tex] confirms that [tex]\( c = 1 \)[/tex].
### Step 6: Validate the Generality
Check [tex]\( c = 1 \)[/tex] over another [tex]\( A \)[/tex]:
- If Equation holds for all test values of [tex]\( A \)[/tex].
So, we finish solving for:
[tex]\[ c = 1 \][/tex]
### Step 1: Simplify the Right-Hand Side
We start by rewriting the right-hand side of the equation:
[tex]\[ \frac{(1 - \tan A)^2}{1 + \tan A} \][/tex]
First, calculate [tex]\((1 - \tan A)^2\)[/tex]:
[tex]\[ (1 - \tan A)^2 = 1 - 2 \tan A + \tan^2 A \][/tex]
So, the right-hand side becomes:
[tex]\[ \frac{1 - 2 \tan A + \tan^2 A}{1 + \tan A} \][/tex]
### Step 2: Analyze the Left-Hand Side
The left-hand side of the equation is already in a fairly simple form:
[tex]\[ 2 \sin^2 \left(\frac{\pi^c}{4} - A\right) \][/tex]
### Step 3: Juggle Trigonometric Identities
To simplify the left-hand side, we recall the trigonometric identity for double angles and sine squared:
[tex]\[ \sin^2 x = \frac{1 - \cos(2x)}{2} \][/tex]
For the arguments, let:
[tex]\[ x = \frac{\pi^c}{4} - A \][/tex]
Then, we have:
[tex]\[ 2 \sin^2 \left( \frac{\pi^c}{4} - A \right) = 2 \cdot \frac{1 - \cos(2 \left( \frac{\pi^c}{4} - A \right))}{2} = 1 - \cos \left( \frac{\pi^c}{2} - 2A \right) \][/tex]
### Step 4: Equate and Solve
Now, equate the simplified left-hand side with the right-hand side:
[tex]\[ 1 - \cos \left( \frac{\pi^c}{2} - 2A \right) = \frac{1 - 2 \tan A + \tan^2 A}{1 + \tan A} \][/tex]
### Step 5: Solve [tex]\( \cos(\cdots) \)[/tex]
First, note the special trick: Let's test with some specific values for [tex]\( A \)[/tex]. Consider [tex]\( A = 0 \)[/tex]:
[tex]\[ 1 - \cos \left( \frac{\pi^c}{2} \right) = 1 \][/tex]
This implies:
[tex]\[ \cos \left( \frac{\pi^c}{2} \right) = 0 \][/tex]
The solution for [tex]\( \frac{\pi^c}{2} = \frac{\pi}{2} \)[/tex] confirms that [tex]\( c = 1 \)[/tex].
### Step 6: Validate the Generality
Check [tex]\( c = 1 \)[/tex] over another [tex]\( A \)[/tex]:
- If Equation holds for all test values of [tex]\( A \)[/tex].
So, we finish solving for:
[tex]\[ c = 1 \][/tex]