Answer :

To simplify the expression [tex]\(3a + 2b - 8a + b\)[/tex], follow these steps:

1. Group like terms:

The like terms involving [tex]\(a\)[/tex] are [tex]\(3a\)[/tex] and [tex]\(-8a\)[/tex].
The like terms involving [tex]\(b\)[/tex] are [tex]\(2b\)[/tex] and [tex]\(b\)[/tex].

2. Combine the coefficients of [tex]\(a\)[/tex]:
[tex]\[ 3a - 8a = (3 - 8)a = -5a \][/tex]

3. Combine the coefficients of [tex]\(b\)[/tex]:
[tex]\[ 2b + b = (2 + 1)b = 3b \][/tex]

4. Write the simplified expression:
[tex]\[ -5a + 3b \][/tex]

Now compare this with the given options:
- [tex]\(-11a + 2b\)[/tex]
- [tex]\(-5a + 3b\)[/tex]
- [tex]\(5a + 3b\)[/tex]

The simplified expression [tex]\(-5a + 3b\)[/tex] matches the second option.

Therefore, the correct answer is:
[tex]\[ -5a + 3b \][/tex]

Answer:

hello

Step-by-step explanation:

3a +2b -8a +b

=3a-8a +2b+b

=-5a+3b (B)