Solve:
[tex]\[
\frac{3y - 1}{2y + 4} = \frac{4}{5}
\][/tex]

A. [tex]\( y = 1 \frac{4}{7} \)[/tex]
B. [tex]\( y = 2 \frac{1}{2} \)[/tex]
C. [tex]\( y = 3 \)[/tex]
D. [tex]\( y = 8 \)[/tex]



Answer :

To solve the equation
[tex]\[ \frac{3y - 1}{2y + 4} = \frac{4}{5} \][/tex]
we need to clear the fractions by cross-multiplying. This means we will multiply both sides of the equation by [tex]\(5(2y + 4)\)[/tex]:

[tex]\[ 5(3y - 1) = 4(2y + 4) \][/tex]

Next, we distribute on both sides of the equation:

[tex]\[ 15y - 5 = 8y + 16 \][/tex]

Now, we need to isolate [tex]\(y\)[/tex]. We do this by first getting all the [tex]\(y\)[/tex]-terms on one side and the constants on the other side. Subtract [tex]\(8y\)[/tex] from both sides:

[tex]\[ 15y - 8y - 5 = 16 \][/tex]

This simplifies to:

[tex]\[ 7y - 5 = 16 \][/tex]

Next, we add 5 to both sides to isolate the term with [tex]\(y\)[/tex]:

[tex]\[ 7y = 21 \][/tex]

Now, divide both sides by 7 to solve for [tex]\(y\)[/tex]:

[tex]\[ y = 3 \][/tex]

Thus, the solution to the equation is:

[tex]\[ y = 3 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{y = 3} \][/tex]

Looking at the multiple-choice options provided:

A. [tex]\(y = 1 \frac{4}{7}\)[/tex]
B. [tex]\(y = 2 \frac{1}{2}\)[/tex]
C. [tex]\(y = 3\)[/tex]
D. [tex]\(y = 8\)[/tex]

The correct option is C. [tex]\(y = 3\)[/tex].