Select the correct answer.

How would you write [tex]8^{\wedge} 5[/tex] as a multiplication expression?

A. [tex]8 \times 5[/tex]

B. [tex]8 \times 8 \times 8 \times 8 \times 8[/tex]

C. [tex]5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5[/tex]



Answer :

To determine how to write [tex]\( 8^{\wedge} 5 \)[/tex] as a multiplication expression, let's understand what the notation [tex]\( 8^{\wedge} 5 \)[/tex] means. This notation represents exponentiation, where 8 is the base and 5 is the exponent.

Exponentiation [tex]\( 8^{\wedge} 5 \)[/tex] or [tex]\( 8^5 \)[/tex] means multiplying the base (8) by itself the number of times indicated by the exponent (5). So, [tex]\( 8^5 \)[/tex] can be written as:

[tex]\[ 8 \times 8 \times 8 \times 8 \times 8 \][/tex]

Therefore, the correct answer is:

B. [tex]\( 8 \times 8 \times 8 \times 8 \times 8 \)[/tex]