Solve the equation:

[tex]\[ \frac{2x}{x-2} - \frac{x+3}{x-4} = \frac{-4x}{x^2 - 6x + 8} \][/tex]

Given solutions to check:

[tex]\[ x = 2, 3 \][/tex]
[tex]\[ x = 2, 4 \][/tex]
[tex]\[ x = 2, 3 \][/tex]



Answer :

To solve the equation

[tex]\[ \frac{2x}{x-2} - \frac{x+3}{x-4} = \frac{-4x}{x^2 - 6x + 8} \][/tex]

we need to follow several steps. Let's go through the solution in a detailed, step-by-step manner.

### Step 1: Identify the equation and constraints

Given:

[tex]\[ \frac{2x}{x-2} - \frac{x+3}{x-4} = \frac{-4x}{x^2 - 6x + 8} \][/tex]

Firstly, we factorize the quadratic expression in the denominator on the right-hand side:

[tex]\[ x^2 - 6x + 8 = (x-2)(x-4) \][/tex]

So the equation becomes:

[tex]\[ \frac{2x}{x-2} - \frac{x+3}{x-4} = \frac{-4x}{(x-2)(x-4)} \][/tex]

### Step 2: Determine the common denominator

For the whole equation, the common denominator for the fractions is [tex]\((x-2)(x-4)\)[/tex]:

[tex]\[ \frac{2x(x-4) - (x+3)(x-2)}{(x-2)(x-4)} = \frac{-4x}{(x-2)(x-4)} \][/tex]

In this form, the denominators are the same, so we can equate the numerators directly:

[tex]\[ 2x(x-4) - (x+3)(x-2) = -4x \][/tex]

### Step 3: Simplify the expression

Expanding both sides:

[tex]\[ 2x(x-4) = 2x^2 - 8x \][/tex]

[tex]\[ (x+3)(x-2) = x^2 - 2x + 3x - 6 = x^2 + x - 6 \][/tex]

So the equation becomes:

[tex]\[ 2x^2 - 8x - (x^2 + x - 6) = -4x \][/tex]

Simplify the left-hand side:

[tex]\[ 2x^2 - 8x - x^2 - x + 6 = -4x \][/tex]

Combine like terms:

[tex]\[ x^2 - 9x + 6 = -4x \][/tex]

Move all terms to one side to set the equation to zero:

[tex]\[ x^2 - 9x + 6 + 4x = 0 \][/tex]

[tex]\[ x^2 - 5x + 6 = 0 \][/tex]

### Step 4: Solve the quadratic equation

To find the values of [tex]\(x\)[/tex], solve the quadratic equation:

[tex]\[ x^2 - 5x + 6 = 0 \][/tex]

Factorize:

[tex]\[ (x - 2)(x - 3) = 0 \][/tex]

Setting each factor to zero gives us the potential solutions:

[tex]\[ x - 2 = 0 \quad \rightarrow \quad x = 2 \][/tex]

[tex]\[ x - 3 = 0 \quad \rightarrow \quad x = 3 \][/tex]

### Step 5: Verify the solutions

Check if the solutions [tex]\(x = 2\)[/tex] and [tex]\(x = 3\)[/tex] are valid by substituting them back into the original equation. We note that the original equation's denominators cannot be zero.

For [tex]\(x = 2\)[/tex]:
[tex]\[ \frac{2 \cdot 2}{2-2} - \frac{2 + 3}{2-4}\][/tex]
\]
Here, the first fraction becomes undefined because the denominator is zero. Therefore, [tex]\(x = 2\)[/tex] is not a valid solution.

For [tex]\(x = 3\)[/tex]:
[tex]\[ \frac{2 \cdot 3}{3-2} - \frac{3+3}{3-4} = \frac{-4 \cdot 3}{3^2 - 6 \cdot 3 + 8} \][/tex]

[tex]\[ \frac{6}{1} - \frac{6}{-1} = \frac{-12}{1} \][/tex]

Simplifying:

[tex]\[ 6 + 6 = -12 \quad \text{not valid} \][/tex]

So, [tex]\(x = 3\)[/tex] is a valid solution.

### Conclusion:
Thus, the valid solution to the equation is:

[tex]\[ x = 3 \][/tex]