Answer :
Let's break down the solution step-by-step to find the average velocity of the car over the first and second [tex]\(0.25 \, \text{m}\)[/tex].
### Step 1: Identify the given data
For the first [tex]\(0.25 \, \text{m}\)[/tex]:
- Time for Trial 1: [tex]\( 2.24 \, \text{s} \)[/tex]
- Time for Trial 2: [tex]\( 2.21 \, \text{s} \)[/tex]
- Time for Trial 3: [tex]\( 2.23 \, \text{s} \)[/tex]
- Given average time: [tex]\( 2.23 \, \text{s} \)[/tex]
For the second [tex]\(0.25 \, \text{m}\)[/tex]:
- Time for Trial 1: [tex]\( 3.16 \, \text{s} \)[/tex]
- Time for Trial 2: [tex]\( 3.08 \, \text{s} \)[/tex]
- Time for Trial 3: [tex]\( 3.15 \, \text{s} \)[/tex]
- Given average time: [tex]\( 3.13 \, \text{s} \)[/tex]
### Step 2: Calculate the distance
The distance for both sections is [tex]\(0.25 \, \text{m}\)[/tex].
### Step 3: Average velocity formula
The average velocity [tex]\( v \)[/tex] can be calculated using the formula:
[tex]\[ v = \frac{d}{t} \][/tex]
where
- [tex]\( d \)[/tex] is the distance
- [tex]\( t \)[/tex] is the time
### Step 4: Calculate the average velocity for the first [tex]\(0.25 \, \text{m}\)[/tex]
[tex]\[ v_1 = \frac{0.25 \, \text{m}}{2.23 \, \text{s}} \][/tex]
[tex]\[ v_1 \approx 0.11210762331838565 \, \text{m/s} \][/tex]
### Step 5: Calculate the average velocity for the second [tex]\(0.25 \, \text{m}\)[/tex]
[tex]\[ v_2 = \frac{0.25 \, \text{m}}{3.13 \, \text{s}} \][/tex]
[tex]\[ v_2 \approx 0.07987220447284345 \, \text{m/s} \][/tex]
### Conclusion
1. The average velocity of the car over the first [tex]\(0.25 \, \text{m}\)[/tex] is approximately [tex]\( 0.112 \, \text{m/s} \)[/tex].
2. The average velocity of the car over the second [tex]\(0.25 \, \text{m}\)[/tex] is approximately [tex]\( 0.080 \, \text{m/s} \)[/tex].
Therefore:
- The average velocity over the first [tex]\(0.25 \, \text{m}\)[/tex] is [tex]\( 0.112 \, \text{m/s} \)[/tex].
- The average velocity over the second [tex]\(0.25 \, \text{m}\)[/tex] is [tex]\( 0.080 \, \text{m/s} \)[/tex].
### Step 1: Identify the given data
For the first [tex]\(0.25 \, \text{m}\)[/tex]:
- Time for Trial 1: [tex]\( 2.24 \, \text{s} \)[/tex]
- Time for Trial 2: [tex]\( 2.21 \, \text{s} \)[/tex]
- Time for Trial 3: [tex]\( 2.23 \, \text{s} \)[/tex]
- Given average time: [tex]\( 2.23 \, \text{s} \)[/tex]
For the second [tex]\(0.25 \, \text{m}\)[/tex]:
- Time for Trial 1: [tex]\( 3.16 \, \text{s} \)[/tex]
- Time for Trial 2: [tex]\( 3.08 \, \text{s} \)[/tex]
- Time for Trial 3: [tex]\( 3.15 \, \text{s} \)[/tex]
- Given average time: [tex]\( 3.13 \, \text{s} \)[/tex]
### Step 2: Calculate the distance
The distance for both sections is [tex]\(0.25 \, \text{m}\)[/tex].
### Step 3: Average velocity formula
The average velocity [tex]\( v \)[/tex] can be calculated using the formula:
[tex]\[ v = \frac{d}{t} \][/tex]
where
- [tex]\( d \)[/tex] is the distance
- [tex]\( t \)[/tex] is the time
### Step 4: Calculate the average velocity for the first [tex]\(0.25 \, \text{m}\)[/tex]
[tex]\[ v_1 = \frac{0.25 \, \text{m}}{2.23 \, \text{s}} \][/tex]
[tex]\[ v_1 \approx 0.11210762331838565 \, \text{m/s} \][/tex]
### Step 5: Calculate the average velocity for the second [tex]\(0.25 \, \text{m}\)[/tex]
[tex]\[ v_2 = \frac{0.25 \, \text{m}}{3.13 \, \text{s}} \][/tex]
[tex]\[ v_2 \approx 0.07987220447284345 \, \text{m/s} \][/tex]
### Conclusion
1. The average velocity of the car over the first [tex]\(0.25 \, \text{m}\)[/tex] is approximately [tex]\( 0.112 \, \text{m/s} \)[/tex].
2. The average velocity of the car over the second [tex]\(0.25 \, \text{m}\)[/tex] is approximately [tex]\( 0.080 \, \text{m/s} \)[/tex].
Therefore:
- The average velocity over the first [tex]\(0.25 \, \text{m}\)[/tex] is [tex]\( 0.112 \, \text{m/s} \)[/tex].
- The average velocity over the second [tex]\(0.25 \, \text{m}\)[/tex] is [tex]\( 0.080 \, \text{m/s} \)[/tex].