Match the like items.

a. [tex]\( 4xy^3 \)[/tex]
b. [tex]\( 14xy \)[/tex]
c. [tex]\( 15y^2 \)[/tex]
d. -6
e. [tex]\( 5x^2 \)[/tex]

1. [tex]\( -12x^2 \)[/tex]
2. [tex]\( 6xy \)[/tex]
3. 11
4. [tex]\( 8xy^3 \)[/tex]
5. [tex]\( -3y^2 \)[/tex]



Answer :

Let's match each expression from list a-e to the corresponding expression in list 1-5 based on their similar terms:

1. Find the match for [tex]\(4xy^3\)[/tex]:
- This expression contains the terms [tex]\(x\)[/tex] and [tex]\(y^3\)[/tex].
- Looking through the second list, the expression that similarly includes [tex]\(x\)[/tex] and [tex]\(y^3\)[/tex] is [tex]\(8xy^3\)[/tex].
- Therefore, [tex]\(4xy^3\)[/tex] matches with [tex]\(8xy^3\)[/tex].

2. Find the match for [tex]\(14xy\)[/tex]:
- This expression contains the terms [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- In the second list, the expression that similarly contains [tex]\(x\)[/tex] and [tex]\(y\)[/tex] is [tex]\(6xy\)[/tex].
- Therefore, [tex]\(14xy\)[/tex] matches with [tex]\(6xy\)[/tex].

3. Find the match for [tex]\(15y^2\)[/tex]:
- This expression contains the term [tex]\(y^2\)[/tex].
- In the second list, the expression that contains [tex]\(y^2\)[/tex] is [tex]\(-3y^2\)[/tex].
- Therefore, [tex]\(15y^2\)[/tex] matches with [tex]\(-3y^2\)[/tex].

4. Find the match for [tex]\(-6\)[/tex]:
- This expression is a constant (no variables).
- In the second list, the expression that is a constant is [tex]\(11\)[/tex].
- Therefore, [tex]\(-6\)[/tex] matches with [tex]\(11\)[/tex].

5. Find the match for [tex]\(5x^2\)[/tex]:
- This expression contains the term [tex]\(x^2\)[/tex].
- In the second list, the expression that contains [tex]\(x^2\)[/tex] is [tex]\(-12x^2\)[/tex].
- Therefore, [tex]\(5x^2\)[/tex] matches with [tex]\(-12x^2\)[/tex].

In summary, the matches are:
- [tex]\(4xy^3\)[/tex] matches with [tex]\(8xy^3\)[/tex].
- [tex]\(14xy\)[/tex] matches with [tex]\(6xy\)[/tex].
- [tex]\(15y^2\)[/tex] matches with [tex]\(-3y^2\)[/tex].
- [tex]\(-6\)[/tex] matches with [tex]\(11\)[/tex].
- [tex]\(5x^2\)[/tex] matches with [tex]\(-12x^2\)[/tex].

Putting it all together, we get the following matched pairs:
- [tex]\(a\)[/tex]: [tex]\(4xy^3\)[/tex] matches with [tex]\(4\)[/tex] (which is [tex]\(8xy^3\)[/tex])
- [tex]\(b\)[/tex]: [tex]\(14xy\)[/tex] matches with [tex]\(2\)[/tex] (which is [tex]\(6xy\)[/tex])
- [tex]\(c\)[/tex]: [tex]\(15y^2\)[/tex] matches with [tex]\(5\)[/tex] (which is [tex]\(-3y^2\)[/tex])
- [tex]\(d\)[/tex]: [tex]\(-6\)[/tex] matches with [tex]\(3\)[/tex] (which is [tex]\(11\)[/tex])
- [tex]\(e\)[/tex]: [tex]\(5x^2\)[/tex] matches with [tex]\(1\)[/tex] (which is [tex]\(-12x^2\)[/tex])

Thus, the final matched pairs are:

[tex]\[ \{ a: 4, b: 2, c: 5, d: 3, e: 1 \} \][/tex]