The radius of a sphere is 6 units.

Which expression represents the volume of the sphere, in cubic units?

A. [tex]\frac{3}{4} \pi(6)^2[/tex]
B. [tex]\frac{4}{3} \pi(6)^3[/tex]
C. [tex]\frac{3}{4} \pi(12)^2[/tex]
D. [tex]\frac{4}{3} \pi(12)^3[/tex]



Answer :

To determine the volume of a sphere with a radius of 6 units, we use the formula for the volume of a sphere. The volume [tex]\( V \)[/tex] of a sphere with radius [tex]\( r \)[/tex] is given by:

[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

Given that the radius [tex]\( r \)[/tex] is 6 units, we substitute this value into the formula:

[tex]\[ V = \frac{4}{3} \pi (6)^3 \][/tex]

This expression represents the volume of the sphere. To confirm, let's substitute the radius into the formula and compute the volume:

[tex]\[ V = \frac{4}{3} \pi (6)^3 \][/tex]

The term [tex]\( (6)^3 \)[/tex], or 6 cubed, equals 216.

So, the volume equation becomes:

[tex]\[ V = \frac{4}{3} \pi \cdot 216 \][/tex]

Simplifying, we multiply [tex]\( \frac{4}{3} \)[/tex] by 216 to get the coefficient in front of [tex]\( \pi \)[/tex]:

[tex]\[ \frac{4}{3} \times 216 = 288 \][/tex]

Thus, the volume in terms of [tex]\( \pi \)[/tex] is:

[tex]\[ V = 288 \pi \][/tex]

Comparing this expression with the given options:

- [tex]\(\frac{3}{4} \pi (6)^2 \)[/tex]
- [tex]\(\frac{4}{3} \pi (6)^3 \)[/tex]
- [tex]\(\frac{3}{4} \pi (12)^2 \)[/tex]
- [tex]\(\frac{4}{3} \pi (12)^3 \)[/tex]

We see that the correct expression for the volume of a sphere with radius 6 units is:

[tex]\[ \frac{4}{3} \pi (6)^3 \][/tex]