If [tex]$x=3$[/tex], solve for [tex]$y$[/tex].

[tex]\[
y = 2 \cdot 3^x
\][/tex]

First, plug in the value of [tex]$x$[/tex] into the equation.

[tex]\[
y = 2 \cdot 3^3
\][/tex]



Answer :

To solve for [tex]\( y \)[/tex] given the equation [tex]\( y = 2 \cdot 3^x \)[/tex] and [tex]\( x = 3 \)[/tex]:

1. Start by plugging in the value of [tex]\( x \)[/tex] into the equation:
[tex]\[ y = 2 \cdot 3^x \][/tex]
When [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 2 \cdot 3^3 \][/tex]

2. Next, calculate [tex]\( 3^3 \)[/tex]:
[tex]\[ 3^3 = 3 \cdot 3 \cdot 3 = 27 \][/tex]

3. Now, substitute [tex]\( 3^3 \)[/tex] with 27 back into the equation:
[tex]\[ y = 2 \cdot 27 \][/tex]

4. Finally, perform the multiplication to find [tex]\( y \)[/tex]:
[tex]\[ y = 54 \][/tex]

So, the value of [tex]\( y \)[/tex] is [tex]\( 54 \)[/tex].