If [tex]$x = 3$[/tex], solve for [tex]$y$[/tex].

Given the equation:
[tex]\[ y = 2 \cdot 3^x \][/tex]

First, plug in the value of [tex]$x$[/tex] into the equation:
[tex]\[ y = 2 \cdot 3^3 \][/tex]



Answer :

Certainly! Let's solve for [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex].

We start with the given equation:
[tex]\[ y = 2 \cdot 3^x \][/tex]

First, substitute the value of [tex]\( x \)[/tex] into the equation:
[tex]\[ y = 2 \cdot 3^3 \][/tex]

Next, calculate [tex]\( 3^3 \)[/tex]. Recall that [tex]\( 3^3 \)[/tex] means [tex]\( 3 \)[/tex] multiplied by itself three times:
[tex]\[ 3^3 = 3 \cdot 3 \cdot 3 = 27 \][/tex]

Now, substitute [tex]\( 27 \)[/tex] back into the equation:
[tex]\[ y = 2 \cdot 27 \][/tex]

Finally, multiply 2 by 27:
[tex]\[ y = 54 \][/tex]

So, the solution is:
[tex]\[ y = 54 \][/tex]