Find: [tex]\left(6m^5 + 3 - m^3 - 4m\right) - \left(-m^5 + 2m^3 - 4m + 6\right)[/tex]

1. Write subtraction of a polynomial expression as addition of the additive inverse.
[tex]\[ \left(6m^5 + 3 - m^3 - 4m\right) + \left(m^5 - 2m^3 + 4m - 6\right) \][/tex]

2. Rewrite terms that are subtracted as addition of the opposite.
[tex]\[ 6m^5 + 3 + \left(-m^3\right) + (-4m) + m^5 + \left(-2m^3\right) + 4m + (-6) \][/tex]

3. Group like terms.
[tex]\[ \left[6m^5 + m^5\right] + [3 + (-6)] + \left[\left(-m^3\right) + \left(-2m^3\right)\right] + [(-4m) + 4m] \][/tex]

4. Combine like terms.
[tex]\[ 7m^5 + (-3) + (-3m^3) + 0 \][/tex]

5. Write the resulting polynomial in standard form.
[tex]\[ 7m^5 - 3m^3 - 3 \][/tex]



Answer :

Sure! To solve this problem step-by-step, let's carefully simplify the given expression.

Given:
[tex]\[ \left(6m^5 + 3 - m^3 - 4m\right) - \left(-m^5 + 2m^3 - 4m + 6\right) \][/tex]

### Step 1: Write the subtraction as addition of the additive inverse

[tex]\[ \left(6m^5 + 3 - m^3 - 4m\right) + \left(m^5 - 2m^3 + 4m - 6\right) \][/tex]

### Step 2: Rewrite terms that are subtracted as addition of the opposite

[tex]\[ 6m^5 + 3 + (-m^3) + (-4m) + m^5 + (-2m^3) + 4m + (-6) \][/tex]

### Step 3: Group like terms

[tex]\[ \begin{array}{l} \text{Group } m^5: \quad (6m^5 + m^5) \\ \text{Group constants:} \quad (3 + (-6)) \\ \text{Group } m^3: \quad (-m^3 + (-2m^3)) \\ \text{Group } m: \quad (-4m + 4m) \end{array} \][/tex]

### Step 4: Combine like terms

Combining the like terms, we get:

[tex]\[ \begin{array}{l} m^5: \quad 6m^5 + m^5 = 7m^5 \\ \text{Constants:} \quad 3 + (-6) = -3 \\ m^3: \quad -m^3 + (-2m^3) = -3m^3 \\ m: \quad -4m + 4m = 0m \end{array} \][/tex]

### Step 5: Write the resulting polynomial in standard form

Since the coefficient of [tex]\(m\)[/tex] is zero, we omit that term. Therefore, the resulting polynomial in standard form is:

[tex]\[ 7m^5 - 3m^3 - 3 \][/tex]

So the final result is:
[tex]\[ 7m^5 - 3m^3 - 3 \][/tex]