Which quadratic function in standard form has the values [tex]\( a=-3.5, b=2.7, \)[/tex] and [tex]\( c=-8.2 \)[/tex]?

A. [tex]\( f(x)=2.7 x^2-8.2 x-3.5 \)[/tex]

B. [tex]\( f(x)=2.7 x^2-3.5 x-8.2 \)[/tex]

C. [tex]\( f(x)=-3.5 x^2-8.2 x+2.7 \)[/tex]

D. [tex]\( f(x)=-3.5 x^2+2.7 x-8.2 \)[/tex]



Answer :

To answer the question of which quadratic function in standard form has the values [tex]\(a = -3.5\)[/tex], [tex]\(b = 2.7\)[/tex], and [tex]\(c = -8.2\)[/tex], we need to recall the general form of a quadratic function. The standard form of a quadratic function is given by:

[tex]\[ f(x) = ax^2 + bx + c \][/tex]

Given the coefficients:
- [tex]\( a = -3.5 \)[/tex]
- [tex]\( b = 2.7 \)[/tex]
- [tex]\( c = -8.2 \)[/tex]

we can plug these values into the quadratic form to construct the function:

[tex]\[ f(x) = -3.5x^2 + 2.7x - 8.2 \][/tex]

Therefore, the correct quadratic function in standard form is:

[tex]\[ f(x) = -3.5 x^2 + 2.7 x - 8.2 \][/tex]

Among the given options, the correct one is:

[tex]\[ f(x) = -3.5 x^2 + 2.7 x - 8.2 \][/tex]

So the correct answer is:

[tex]\[ f(x) = -3.5 x^2 + 2.7 x - 8.2 \][/tex]