Answer :
Given the quadratic functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], we need to determine how [tex]\( f(x) \)[/tex] should be shifted to match [tex]\( g(x) \)[/tex].
First, let's analyze the given values in the table:
[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x) & g(x) \\ \hline -6 & 36 & 4 \\ -5 & 25 & 1 \\ -4 & 16 & 0 \\ -3 & 9 & 1 \\ -2 & 4 & 4 \\ -1 & 1 & 9 \\ 0 & 0 & 16 \\ 1 & 1 & 25 \\ 2 & 4 & 36 \\ \hline \end{array} \][/tex]
We can see that [tex]\( f(x) \)[/tex] is a classic quadratic function [tex]\( f(x) = x^2 \)[/tex].
Now let's track the relationship between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] by examining corresponding values:
- When [tex]\( x = -6 \)[/tex], [tex]\( f(-6) = 36 \)[/tex] and [tex]\( g(x) = 36 \)[/tex] when [tex]\( x = 2 \)[/tex].
- When [tex]\( x = -5 \)[/tex], [tex]\( f(-5) = 25 \)[/tex] and [tex]\( g(x) = 25 \)[/tex] when [tex]\( x = 1 \)[/tex].
- When [tex]\( x = -4 \)[/tex], [tex]\( f(-4) = 16 \)[/tex] and [tex]\( g(x) = 16 \)[/tex] when [tex]\( x = 0 \)[/tex].
- When [tex]\( x = -2 \)[/tex], [tex]\( f(-2) = 4 \)[/tex] and [tex]\( g(x) = 4 \)[/tex] when [tex]\( x = -2 \)[/tex].
From the analysis above, when we move the [tex]\( x \)[/tex] value from [tex]\( f(x) \)[/tex] by +4, we get the desired [tex]\( g(x) \)[/tex] value. This indicates a horizontal shift of 4 units to the right.
Thus, to match [tex]\( f(x) \)[/tex] to [tex]\( g(x) \)[/tex], [tex]\( f(x) \)[/tex] must be shifted:
Right by 4 units
This change transforms [tex]\( f(x) = x^2 \)[/tex] into [tex]\( g(x) = (x-4)^2 \)[/tex], aligning [tex]\( f(x) \)[/tex] with [tex]\( g(x) \)[/tex] accurately.
First, let's analyze the given values in the table:
[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x) & g(x) \\ \hline -6 & 36 & 4 \\ -5 & 25 & 1 \\ -4 & 16 & 0 \\ -3 & 9 & 1 \\ -2 & 4 & 4 \\ -1 & 1 & 9 \\ 0 & 0 & 16 \\ 1 & 1 & 25 \\ 2 & 4 & 36 \\ \hline \end{array} \][/tex]
We can see that [tex]\( f(x) \)[/tex] is a classic quadratic function [tex]\( f(x) = x^2 \)[/tex].
Now let's track the relationship between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] by examining corresponding values:
- When [tex]\( x = -6 \)[/tex], [tex]\( f(-6) = 36 \)[/tex] and [tex]\( g(x) = 36 \)[/tex] when [tex]\( x = 2 \)[/tex].
- When [tex]\( x = -5 \)[/tex], [tex]\( f(-5) = 25 \)[/tex] and [tex]\( g(x) = 25 \)[/tex] when [tex]\( x = 1 \)[/tex].
- When [tex]\( x = -4 \)[/tex], [tex]\( f(-4) = 16 \)[/tex] and [tex]\( g(x) = 16 \)[/tex] when [tex]\( x = 0 \)[/tex].
- When [tex]\( x = -2 \)[/tex], [tex]\( f(-2) = 4 \)[/tex] and [tex]\( g(x) = 4 \)[/tex] when [tex]\( x = -2 \)[/tex].
From the analysis above, when we move the [tex]\( x \)[/tex] value from [tex]\( f(x) \)[/tex] by +4, we get the desired [tex]\( g(x) \)[/tex] value. This indicates a horizontal shift of 4 units to the right.
Thus, to match [tex]\( f(x) \)[/tex] to [tex]\( g(x) \)[/tex], [tex]\( f(x) \)[/tex] must be shifted:
Right by 4 units
This change transforms [tex]\( f(x) = x^2 \)[/tex] into [tex]\( g(x) = (x-4)^2 \)[/tex], aligning [tex]\( f(x) \)[/tex] with [tex]\( g(x) \)[/tex] accurately.