Let [tex]$R$[/tex] be the event that Elena chooses a red flower from a vase, and [tex]$W$[/tex] be the event that Glenn chooses a white flower from a different vase.

- [tex]$P(R) = \frac{1}{4}$[/tex]
- [tex]$P(W) = \frac{8}{23}$[/tex]
- [tex]$P(R \text{ and } W) = \frac{2}{23}$[/tex]

Move words and a symbol to the blanks to complete the sentence about the events.

The events that Elena chooses a red flower and Glenn chooses a white flower are [tex]$\qquad$[/tex] because [tex]$P(R \text{ and } W)$[/tex] is [tex]$\qquad$[/tex] to [tex]$P(R)$[/tex] [tex]$\qquad$[/tex] [tex]$P(W)$[/tex].

- Independent
- equal
- dependent
- not equal



Answer :

Given the probabilities:
- [tex]\( P(R) = \frac{1}{4} \)[/tex]
- [tex]\( P(W) = \frac{8}{23} \)[/tex]
- [tex]\( P(R \text{ and } W) = \frac{2}{23} \)[/tex]

To determine whether the events [tex]\( R \)[/tex] and [tex]\( W \)[/tex] are independent, we need to check if [tex]\( P(R \text{ and } W) = P(R) \times P(W) \)[/tex].

Calculate [tex]\( P(R) \times P(W) \)[/tex]:
[tex]\[ P(R) \times P(W) = \left( \frac{1}{4} \right) \times \left( \frac{8}{23} \right) = \frac{1 \times 8}{4 \times 23} = \frac{8}{92} = \frac{2}{23} \][/tex]

We see that:
[tex]\[ P(R \text{ and } W) = \frac{2}{23} \][/tex]
[tex]\[ P(R) \times P(W) = \frac{2}{23} \][/tex]

Since [tex]\( P(R \text{ and } W) = P(R) \times P(W) \)[/tex], the events [tex]\( R \)[/tex] and [tex]\( W \)[/tex] are independent.

Therefore, the completed sentence is:

The events that Elena chooses a red flower and Glenn chooses a white flower are independent because [tex]\( P(R \text{ and } W) \)[/tex] is equal to [tex]\( P(R) \ times \( P(W) \)[/tex].