Answer :
To solve the problem of finding the measures of the angles in triangle [tex]\(ABC\)[/tex] where [tex]\(AC = 7\)[/tex] inches, [tex]\(BC = 24\)[/tex] inches, and [tex]\(AB = 25\)[/tex] inches, follow these steps:
### Step 1: Identify the Given Information
We are given:
- [tex]\(AC = 7\)[/tex] inches (one leg of the triangle)
- [tex]\(BC = 24\)[/tex] inches (the other leg of the triangle)
- [tex]\(AB = 25\)[/tex] inches (the hypotenuse of the triangle)
Since the triangle is a right triangle, we have:
- [tex]\(\angle C = 90^\circ\)[/tex]
### Step 2: Use Trigonometric Ratios to Find Angles
1. Finding [tex]\(\angle A\)[/tex]:
[tex]\[ \sin(\angle A) = \frac{AC}{AB} = \frac{7}{25} \][/tex]
[tex]\[ \angle A = \arcsin\left(\frac{7}{25}\right) \approx 16.3^\circ \][/tex]
2. Finding [tex]\(\angle B\)[/tex]:
Using the complementary angle relationship in a right triangle:
[tex]\[ \angle B = 90^\circ - \angle A = 90^\circ - 16.3^\circ \approx 73.7^\circ \][/tex]
### Step 3: Conclude the Measures of the Angles
From the calculations:
- [tex]\(\angle A \approx 16.3^\circ\)[/tex]
- [tex]\(\angle B \approx 73.7^\circ\)[/tex]
- [tex]\(\angle C = 90^\circ\)[/tex] (since it is a right triangle)
Thus, the correct measures of the angles in triangle [tex]\(ABC\)[/tex] are:
- [tex]\(m \angle A \approx 16.3^\circ\)[/tex]
- [tex]\(m \angle B \approx 73.7^\circ\)[/tex]
- [tex]\(m \angle C = 90^\circ\)[/tex]
### Answer
The correct option is:
[tex]\[ \boxed{m \angle A \approx 73.7^\circ, m_{\angle} B \approx 16.3^\circ, m \angle C \approx 90^\circ} \][/tex]
### Step 1: Identify the Given Information
We are given:
- [tex]\(AC = 7\)[/tex] inches (one leg of the triangle)
- [tex]\(BC = 24\)[/tex] inches (the other leg of the triangle)
- [tex]\(AB = 25\)[/tex] inches (the hypotenuse of the triangle)
Since the triangle is a right triangle, we have:
- [tex]\(\angle C = 90^\circ\)[/tex]
### Step 2: Use Trigonometric Ratios to Find Angles
1. Finding [tex]\(\angle A\)[/tex]:
[tex]\[ \sin(\angle A) = \frac{AC}{AB} = \frac{7}{25} \][/tex]
[tex]\[ \angle A = \arcsin\left(\frac{7}{25}\right) \approx 16.3^\circ \][/tex]
2. Finding [tex]\(\angle B\)[/tex]:
Using the complementary angle relationship in a right triangle:
[tex]\[ \angle B = 90^\circ - \angle A = 90^\circ - 16.3^\circ \approx 73.7^\circ \][/tex]
### Step 3: Conclude the Measures of the Angles
From the calculations:
- [tex]\(\angle A \approx 16.3^\circ\)[/tex]
- [tex]\(\angle B \approx 73.7^\circ\)[/tex]
- [tex]\(\angle C = 90^\circ\)[/tex] (since it is a right triangle)
Thus, the correct measures of the angles in triangle [tex]\(ABC\)[/tex] are:
- [tex]\(m \angle A \approx 16.3^\circ\)[/tex]
- [tex]\(m \angle B \approx 73.7^\circ\)[/tex]
- [tex]\(m \angle C = 90^\circ\)[/tex]
### Answer
The correct option is:
[tex]\[ \boxed{m \angle A \approx 73.7^\circ, m_{\angle} B \approx 16.3^\circ, m \angle C \approx 90^\circ} \][/tex]