Find the area of a circle whose diameter is 20 cm. (Use [tex]\pi=3.14[/tex])

A. [tex]31.4 \, \text{cm}^2[/tex]
B. [tex]62.8 \, \text{cm}^2[/tex]
C. [tex]314 \, \text{cm}^2[/tex]
D. [tex]400 \, \text{cm}^2[/tex]
E. [tex]1256 \, \text{cm}^2[/tex]



Answer :

To find the area of a circle with a given diameter of 20 cm, we need to follow these steps:

1. Determine the radius:
The radius of a circle is half of its diameter. Given the diameter of the circle is 20 cm, we can find the radius as:
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} = \frac{20 \text{ cm}}{2} = 10 \text{ cm} \][/tex]

2. Recall the formula for the area of a circle:
The formula for the area [tex]\( A \)[/tex] of a circle is given by:
[tex]\[ A = \pi r^2 \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle.

3. Substitute the given values into the formula:
We were given that [tex]\(\pi = 3.14\)[/tex] and from step 1, we found that the radius [tex]\( r \)[/tex] is 10 cm. Substituting these values, we have:
[tex]\[ A = 3.14 \times (10 \text{ cm})^2 \][/tex]

4. Calculate the area:
First, compute [tex]\( (10 \text{ cm})^2 \)[/tex]:
[tex]\[ (10 \text{ cm})^2 = 100 \text{ cm}^2 \][/tex]
Next, multiply by [tex]\(\pi\)[/tex]:
[tex]\[ A = 3.14 \times 100 \text{ cm}^2 = 314 \text{ cm}^2 \][/tex]

Therefore, the area of the circle is [tex]\( 314 \text{ cm}^2 \)[/tex].

So the correct option is:
C. [tex]\( 314 \text{ cm}^2 \)[/tex]