Which expression is equivalent to [tex]\left(\frac{1}{z^{3 / 5}}\right)^{-1 / 5}[/tex]?

A. [tex]z^{3 / 25}[/tex]
B. [tex]z^{-3 / 25}[/tex]
C. [tex]z^{-2 / 5}[/tex]
D. [tex]z^{2 / 5}[/tex]



Answer :

To simplify the given expression [tex]\(\left(\frac{1}{z^{3 / 5}}\right)^{-1 / 5}\)[/tex], we can follow a series of algebraic steps.

1. Start with the inner part of the expression: [tex]\(\frac{1}{z^{3 / 5}}\)[/tex].

2. Recognize that [tex]\(\frac{1}{z^{3 / 5}}\)[/tex] is the same as [tex]\(z^{-3 / 5}\)[/tex]:
[tex]\[ \frac{1}{z^{3 / 5}} = z^{-3 / 5} \][/tex]

3. Now consider the outer exponent [tex]\(-1 / 5\)[/tex]:
[tex]\[ \left(z^{-3 / 5}\right)^{-1 / 5} \][/tex]

4. Apply the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ \left(z^{-3 / 5}\right)^{-1 / 5} = z^{\left(-3 / 5 \cdot -1 / 5\right)} \][/tex]

5. Multiply the exponents:
[tex]\[ -3 / 5 \cdot -1 / 5 = \frac{3}{25} \][/tex]

6. Thus, we get:
[tex]\[ z^{3 / 25} \][/tex]

Hence, the equivalent expression is:
[tex]\[ z^{3 / 25} \][/tex]

The correct answer is:
A. [tex]\(z^{3 / 25}\)[/tex]