A rectangular prism has a height of [tex]\frac{2}{5} \, m[/tex] and a square base with an area of [tex]2 \frac{4}{5} \, m^2[/tex].

What is the volume of the rectangular prism?

Enter the answer in the box: [tex]\square \, m^3[/tex]



Answer :

To find the volume of the rectangular prism, we need to follow these steps:

1. Identify the height of the prism:
The height of the rectangular prism is given as [tex]\(\frac{2}{5} \, m\)[/tex].

2. Convert the area of the square base to an improper fraction and then to a decimal:
The area of the square base is given as [tex]\(2 \frac{4}{5} \, m^2\)[/tex]. First, convert this mixed number to an improper fraction.

[tex]\(2 \frac{4}{5} = 2 + \frac{4}{5} = \frac{10}{5} + \frac{4}{5} = \frac{14}{5}\)[/tex]

Now, convert the improper fraction to a decimal value:
[tex]\[ \frac{14}{5} = 2.8 \][/tex]

So, the area of the square base is [tex]\(2.8 \, m^2\)[/tex].

3. Calculate the volume of the rectangular prism:
The volume [tex]\(V\)[/tex] of a rectangular prism is calculated by multiplying the height [tex]\(h\)[/tex] by the area of the base [tex]\(A\)[/tex]:

[tex]\[ V = h \times A \][/tex]

Substitute the given values:

[tex]\[ V = \left( \frac{2}{5} \, m \right) \times \left( 2.8 \, m^2 \right) \][/tex]

Now, perform the multiplication:

[tex]\[ \frac{2}{5} \times 2.8 = 0.4 \times 2.8 = 1.12 \][/tex]

Therefore, the volume of the rectangular prism is:

[tex]\[ V = 1.12 \, m^3 \][/tex]

So, the volume of the rectangular prism is [tex]\(1.12 \, m^3\)[/tex].