Which expression is the simplest form of [tex]$-\left(2 x^3+x^2\right)+3\left(x^3-4 x^2\right)$[/tex]?

A. [tex]$x^3-3 x^2$[/tex]
B. [tex][tex]$5 x^3-11 x^2$[/tex][/tex]
C. [tex]$x^3-13 x^2$[/tex]
D. [tex]$5 x^3-12 x^2$[/tex]



Answer :

To find the simplest form of the expression [tex]\( -\left(2 x^3 + x^2\right) + 3\left(x^3 - 4 x^2\right) \)[/tex], we need to follow these steps:

1. Distribute the negative sign and the 3:
- For the first part, distribute the negative sign:
[tex]\[ - (2 x^3 + x^2) = -2 x^3 - x^2 \][/tex]
- For the second part, distribute the 3:
[tex]\[ 3(x^3 - 4 x^2) = 3 x^3 - 12 x^2 \][/tex]

2. Combine like terms:
[tex]\[ -2 x^3 - x^2 + 3 x^3 - 12 x^2 \][/tex]

To combine, group the terms with the same powers of [tex]\( x \)[/tex]:
[tex]\[ (-2 x^3 + 3 x^3) + (-x^2 - 12 x^2) \][/tex]

3. Simplify the coefficients:
- For [tex]\( x^3 \)[/tex] terms: [tex]\( -2 x^3 + 3 x^3 = x^3 \)[/tex]
- For [tex]\( x^2 \)[/tex] terms: [tex]\( -x^2 - 12 x^2 = -13 x^2 \)[/tex]

So, the simplified expression is:
[tex]\[ x^3 - 13 x^2 \][/tex]

Therefore, the simplest form of the given expression [tex]\( -\left(2 x^3 + x^2\right) + 3\left(x^3 - 4 x^2\right) \)[/tex] is [tex]\( x^3 - 13 x^2 \)[/tex].

The correct answer is:
[tex]\[ \boxed{C. \ x^3 - 13 x^2} \][/tex]