Answer :
Let's go through each part of the problem step-by-step.
### Part 1: Expression for [tex]\((s \cdot r)(x)\)[/tex]
To find [tex]\((s \cdot r)(x)\)[/tex], we need to multiply the functions [tex]\(s(x)\)[/tex] and [tex]\(r(x)\)[/tex]:
[tex]\[ s(x) = x - 1 \][/tex]
[tex]\[ r(x) = 3x + 1 \][/tex]
We calculate the product:
[tex]\[ (s \cdot r)(x) = s(x) \cdot r(x) = (x - 1) \cdot (3x + 1) \][/tex]
Distribute the terms:
[tex]\[ (x - 1)(3x + 1) = x \cdot 3x + x \cdot 1 - 1 \cdot 3x - 1 \cdot 1 \][/tex]
[tex]\[ = 3x^2 + x - 3x - 1 \][/tex]
[tex]\[ = 3x^2 - 2x - 1 \][/tex]
Thus, we have:
[tex]\[ (s \cdot r)(x) = 3x^2 - 2x - 1 \][/tex]
### Part 2: Expression for [tex]\((s - r)(x)\)[/tex]
To find [tex]\((s - r)(x)\)[/tex], we need to subtract the function [tex]\(r(x)\)[/tex] from [tex]\(s(x)\)[/tex]:
[tex]\[ s(x) = x - 1 \][/tex]
[tex]\[ r(x) = 3x + 1 \][/tex]
We calculate the difference:
[tex]\[ (s - r)(x) = s(x) - r(x) = (x - 1) - (3x + 1) \][/tex]
Simplify the expression:
[tex]\[ (x - 1) - (3x + 1) = x - 1 - 3x - 1 \][/tex]
[tex]\[ = x - 3x - 1 - 1 \][/tex]
[tex]\[ = -2x - 2 \][/tex]
Thus, we have:
[tex]\[ (s - r)(x) = -2x - 2 \][/tex]
### Part 3: Evaluating [tex]\((s + r)(1)\)[/tex]
To find [tex]\((s + r)(1)\)[/tex], we need to add the values of [tex]\(s(x)\)[/tex] and [tex]\(r(x)\)[/tex] when [tex]\(x = 1\)[/tex]:
[tex]\[ s(x) = x - 1 \implies s(1) = 1 - 1 = 0 \][/tex]
[tex]\[ r(x) = 3x + 1 \implies r(1) = 3 \cdot 1 + 1 = 4 \][/tex]
We calculate the sum:
[tex]\[ (s + r)(1) = s(1) + r(1) = 0 + 4 = 4 \][/tex]
### Summary
The results are:
[tex]\[ \begin{array}{|l|} \hline (s \cdot r)(x) = 3x^2 - 2x - 1 \\ (s - r)(x) = -2x - 2 \\ (s + r)(1) = 4 \\ \hline \end{array} \][/tex]
### Part 1: Expression for [tex]\((s \cdot r)(x)\)[/tex]
To find [tex]\((s \cdot r)(x)\)[/tex], we need to multiply the functions [tex]\(s(x)\)[/tex] and [tex]\(r(x)\)[/tex]:
[tex]\[ s(x) = x - 1 \][/tex]
[tex]\[ r(x) = 3x + 1 \][/tex]
We calculate the product:
[tex]\[ (s \cdot r)(x) = s(x) \cdot r(x) = (x - 1) \cdot (3x + 1) \][/tex]
Distribute the terms:
[tex]\[ (x - 1)(3x + 1) = x \cdot 3x + x \cdot 1 - 1 \cdot 3x - 1 \cdot 1 \][/tex]
[tex]\[ = 3x^2 + x - 3x - 1 \][/tex]
[tex]\[ = 3x^2 - 2x - 1 \][/tex]
Thus, we have:
[tex]\[ (s \cdot r)(x) = 3x^2 - 2x - 1 \][/tex]
### Part 2: Expression for [tex]\((s - r)(x)\)[/tex]
To find [tex]\((s - r)(x)\)[/tex], we need to subtract the function [tex]\(r(x)\)[/tex] from [tex]\(s(x)\)[/tex]:
[tex]\[ s(x) = x - 1 \][/tex]
[tex]\[ r(x) = 3x + 1 \][/tex]
We calculate the difference:
[tex]\[ (s - r)(x) = s(x) - r(x) = (x - 1) - (3x + 1) \][/tex]
Simplify the expression:
[tex]\[ (x - 1) - (3x + 1) = x - 1 - 3x - 1 \][/tex]
[tex]\[ = x - 3x - 1 - 1 \][/tex]
[tex]\[ = -2x - 2 \][/tex]
Thus, we have:
[tex]\[ (s - r)(x) = -2x - 2 \][/tex]
### Part 3: Evaluating [tex]\((s + r)(1)\)[/tex]
To find [tex]\((s + r)(1)\)[/tex], we need to add the values of [tex]\(s(x)\)[/tex] and [tex]\(r(x)\)[/tex] when [tex]\(x = 1\)[/tex]:
[tex]\[ s(x) = x - 1 \implies s(1) = 1 - 1 = 0 \][/tex]
[tex]\[ r(x) = 3x + 1 \implies r(1) = 3 \cdot 1 + 1 = 4 \][/tex]
We calculate the sum:
[tex]\[ (s + r)(1) = s(1) + r(1) = 0 + 4 = 4 \][/tex]
### Summary
The results are:
[tex]\[ \begin{array}{|l|} \hline (s \cdot r)(x) = 3x^2 - 2x - 1 \\ (s - r)(x) = -2x - 2 \\ (s + r)(1) = 4 \\ \hline \end{array} \][/tex]