Simplify for all [tex]x \neq 4[/tex]:

[tex]\frac{x^3 - 4x^2 + 5x - 20}{x - 4}[/tex]

A. [tex]x^2 + 5[/tex]
B. [tex]x^3 - 4x^2[/tex]
C. [tex]x^2 + 5 - 20[/tex]
D. [tex]x^3 - x^2 - 15[/tex]
E. [tex]x^3 - 4x^2 + 5[/tex]



Answer :

Sure, let's tackle the problem of simplifying the rational expression:

[tex]\[ \frac{x^3 - 4x^2 + 5x - 20}{x - 4} \][/tex]

Here are the steps to simplify it:

1. Recognize the form:
We have a polynomial in the numerator [tex]\(x^3 - 4x^2 + 5x - 20\)[/tex] and a linear term in the denominator [tex]\(x - 4\)[/tex].

2. Polynomial Long Division:
Use polynomial long division to divide the numerator by the denominator. However, for simplicity, we use factorization and cancel common factors.

3. Factor the Numerator:
Let's assume we already factored the polynomial [tex]\(x^3 - 4x^2 + 5x - 20\)[/tex]. After factorization, it simplifies to:

[tex]\[ (x - 4)(x^2 + 5) \][/tex]

4. Cancel Common Factors:
The expression now becomes:

[tex]\[ \frac{(x - 4)(x^2 + 5)}{x - 4} \][/tex]

Since [tex]\(x \neq 4\)[/tex], we can cancel the common factor [tex]\((x - 4)\)[/tex] from the numerator and the denominator:

[tex]\[ x^2 + 5 \][/tex]

5. Simplified Expression:
Therefore, the simplified form of the given rational function is:

[tex]\[ x^2 + 5 \][/tex]

After these steps, we conclude that the correct option is:

A. [tex]\(x^2 + 5\)[/tex]

So the final simplified expression is:

[tex]\[ \boxed{x^2 + 5} \][/tex]