\begin{tabular}{|l|l|}
\hline Ideal gas law & [tex]$P V=n R T$[/tex] \\
\hline & [tex]$R=8.314 \frac{ L kPa }{ mol K}$[/tex] \\
Ideal gas constant & Or \\
\hline Standard atmospheric pressure & [tex]$R=0.0821 \frac{ L atm }{ mol K }$[/tex] \\
\hline Celsius to Kelvin conversion & [tex]$1 atm=101.3 kPa$[/tex] \\
\hline & [tex]$K ={ }^{\circ} C +273.15$[/tex] \\
\hline
\end{tabular}

Type the correct answer in the box. Express your answer to three significant figures.

An empty water bottle is full of air at [tex]$15^{\circ} C$[/tex] and standard pressure. The volume of the bottle is 0.500 liter. How many moles of air are in the bottle?

The water bottle contains [tex]$\square$[/tex] mole of air.



Answer :

To determine the number of moles of air in an empty water bottle at [tex]\(15^\circ \text{C}\)[/tex] and standard pressure, we will use the ideal gas law, which is represented by the equation:

[tex]\[ PV = nRT \][/tex]

where:
- [tex]\( P \)[/tex] is the pressure in atmospheres.
- [tex]\( V \)[/tex] is the volume in liters.
- [tex]\( n \)[/tex] is the number of moles of gas.
- [tex]\( R \)[/tex] is the ideal gas constant, [tex]\(0.0821 \frac{L \cdot atm}{mol \cdot K}\)[/tex].
- [tex]\( T \)[/tex] is the temperature in Kelvin.

### Step-by-Step Solution:

1. Convert the temperature from Celsius to Kelvin:

[tex]\[ T = 15^\circ \text{C} + 273.15 = 288.15 \, \text{K} \][/tex]

2. Use the ideal gas law equation:

[tex]\[ n = \frac{PV}{RT} \][/tex]

Here:
- [tex]\( P = 1 \, \text{atm} \)[/tex] (standard atmospheric pressure).
- [tex]\( V = 0.500 \, \text{L} \)[/tex] (volume of the bottle).
- [tex]\( R = 0.0821 \frac{L \cdot atm}{mol \cdot K} \)[/tex].
- [tex]\( T = 288.15 \, \text{K} \)[/tex].

3. Substitute the known values into the ideal gas law equation:

[tex]\[ n = \frac{(1 \, \text{atm}) \times (0.500 \, \text{L})}{(0.0821 \frac{L \cdot atm}{mol \cdot K}) \times (288.15 \, \text{K})} \][/tex]

4. Calculate the number of moles [tex]\( n \)[/tex]:

[tex]\[ n \approx 0.0211 \, \text{moles} \][/tex]

Therefore, the water bottle contains 0.0211 moles of air.