Answer :
Let's analyze the given expressions step by step to find their equivalents.
1. For the expression [tex]\(\left(x^2 + 15x + 65\right) + \left(2x - 5\right)\left(3x + 8\right)\)[/tex]:
- Expanding and simplifying, this expression results in [tex]\(7x^2 + 16x + 25\)[/tex].
- Therefore, this is equivalent to expression B.
2. For the expression [tex]\(\left(4x + 1\right)\left(3x - 4\right) - \left(5x^2 - 10x - 12\right)\)[/tex]:
- Expanding and simplifying, this expression results in [tex]\(7x^2 - 3x + 8\)[/tex].
- Therefore, this is equivalent to expression D.
3. For the expression [tex]\(\left(8x^2 + 19x + 4\right) + \left(3x + 2\right)\left(x - 5\right)\)[/tex]:
- Expanding and simplifying, this expression results in [tex]\(11x^2 + 6x - 6\)[/tex].
- Therefore, this is equivalent to expression A.
4. For the expression [tex]\(\left(6x + 1\right)\left(3x - 7\right) - \left(7x^2 - 34x - 20\right)\)[/tex]:
- Expanding and simplifying, this expression results in [tex]\(11x^2 - 5x + 13\)[/tex].
- Therefore, this is equivalent to expression C.
Let's compile the matches:
- [tex]\(\left(x^2 + 15x + 65\right) + \left(2x - 5\right)\left(3x + 8\right)\)[/tex] is equivalent to expression B.
- [tex]\(\left(4x + 1\right)\left(3x - 4\right) - \left(5x^2 - 10x - 12\right)\)[/tex] is equivalent to expression D.
- [tex]\(\left(8x^2 + 19x + 4\right) + \left(3x + 2\right)\left(x - 5\right)\)[/tex] is equivalent to expression A.
- [tex]\(\left(6x + 1\right)\left(3x - 7\right) - \left(7x^2 - 34x - 20\right)\)[/tex] is equivalent to expression C.
Thus, the correct matches are:
- [tex]\(\left(x^2 + 15x + 65\right) + \left(2x - 5\right)\left(3x + 8\right)\)[/tex] is equivalent to expression B.
- [tex]\(\left(4x + 1\right)\left(3x - 4\right) - \left(5x^2 - 10x - 12\right)\)[/tex] is equivalent to expression D.
- [tex]\(\left(8x^2 + 19x + 4\right) + \left(3x + 2\right)\left(x - 5\right)\)[/tex] is equivalent to expression A.
- [tex]\(\left(6x + 1\right)\left(3x - 7\right) - \left(7x^2 - 34x - 20\right)\)[/tex] is equivalent to expression C.
1. For the expression [tex]\(\left(x^2 + 15x + 65\right) + \left(2x - 5\right)\left(3x + 8\right)\)[/tex]:
- Expanding and simplifying, this expression results in [tex]\(7x^2 + 16x + 25\)[/tex].
- Therefore, this is equivalent to expression B.
2. For the expression [tex]\(\left(4x + 1\right)\left(3x - 4\right) - \left(5x^2 - 10x - 12\right)\)[/tex]:
- Expanding and simplifying, this expression results in [tex]\(7x^2 - 3x + 8\)[/tex].
- Therefore, this is equivalent to expression D.
3. For the expression [tex]\(\left(8x^2 + 19x + 4\right) + \left(3x + 2\right)\left(x - 5\right)\)[/tex]:
- Expanding and simplifying, this expression results in [tex]\(11x^2 + 6x - 6\)[/tex].
- Therefore, this is equivalent to expression A.
4. For the expression [tex]\(\left(6x + 1\right)\left(3x - 7\right) - \left(7x^2 - 34x - 20\right)\)[/tex]:
- Expanding and simplifying, this expression results in [tex]\(11x^2 - 5x + 13\)[/tex].
- Therefore, this is equivalent to expression C.
Let's compile the matches:
- [tex]\(\left(x^2 + 15x + 65\right) + \left(2x - 5\right)\left(3x + 8\right)\)[/tex] is equivalent to expression B.
- [tex]\(\left(4x + 1\right)\left(3x - 4\right) - \left(5x^2 - 10x - 12\right)\)[/tex] is equivalent to expression D.
- [tex]\(\left(8x^2 + 19x + 4\right) + \left(3x + 2\right)\left(x - 5\right)\)[/tex] is equivalent to expression A.
- [tex]\(\left(6x + 1\right)\left(3x - 7\right) - \left(7x^2 - 34x - 20\right)\)[/tex] is equivalent to expression C.
Thus, the correct matches are:
- [tex]\(\left(x^2 + 15x + 65\right) + \left(2x - 5\right)\left(3x + 8\right)\)[/tex] is equivalent to expression B.
- [tex]\(\left(4x + 1\right)\left(3x - 4\right) - \left(5x^2 - 10x - 12\right)\)[/tex] is equivalent to expression D.
- [tex]\(\left(8x^2 + 19x + 4\right) + \left(3x + 2\right)\left(x - 5\right)\)[/tex] is equivalent to expression A.
- [tex]\(\left(6x + 1\right)\left(3x - 7\right) - \left(7x^2 - 34x - 20\right)\)[/tex] is equivalent to expression C.