Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Evaluate the numerical expression and match to its value.

Tiles:
8.96
20.9
21
13
27.4
896
20.27

Expressions:

1. [tex]$5.6 \div 2^3+(12.75+7.45)$[/tex]
[tex]$\longrightarrow$[/tex]

2. [tex]$4^3 \times(0.6+3.6) \div 0.3$[/tex]
[tex]$\longrightarrow$[/tex]

3. [tex]$2^4+(2.75+1.75) \div 0.9$[/tex]
[tex]$\longrightarrow$[/tex]



Answer :

Let's match the given numerical expressions with their evaluated values.

1. Evaluate the expression [tex]\(5.6 \div 2^3+(12.75+7.45)\)[/tex]:
- First, calculate [tex]\(2^3 = 8\)[/tex].
- Then, [tex]\(5.6 \div 8 = 0.7\)[/tex].
- Next, add [tex]\(12.75 + 7.45 = 20.2\)[/tex].
- Finally, add [tex]\(0.7 + 20.2 = 20.9\)[/tex].

So, [tex]\(5.6 \div 2^3+(12.75+7.45) \longrightarrow 20.9\)[/tex].

2. Evaluate the expression [tex]\(4^3 \times (0.6 + 3.6) \div 0.3\)[/tex]:
- First, calculate [tex]\(4^3 = 64\)[/tex].
- Then, add [tex]\(0.6 + 3.6 = 4.2\)[/tex].
- Next, multiply [tex]\(64 \times 4.2 = 268.8\)[/tex].
- Finally, divide [tex]\(268.8 \div 0.3 = 896\)[/tex].

So, [tex]\(4^3 \times (0.6 + 3.6) \div 0.3 \longrightarrow 896\)[/tex].

3. Evaluate the expression [tex]\(2^4 + (2.75 + 1.75) \div 0.9\)[/tex]:
- First, calculate [tex]\(2^4 = 16\)[/tex].
- Then, add [tex]\(2.75 + 1.75 = 4.5\)[/tex].
- Next, divide [tex]\(4.5 \div 0.9 = 5\)[/tex].
- Finally, add [tex]\(16 + 5 = 21\)[/tex].

So, [tex]\(2^4 + (2.75 + 1.75) \div 0.9 \longrightarrow 21\)[/tex].

Summarizing, the matched pairs are:

- [tex]\(5.6 \div 2^3+(12.75+7.45) \longrightarrow 20.9\)[/tex]
- [tex]\(4^3 \times(0.6+3.6) \div 0.3 \longrightarrow 896\)[/tex]
- [tex]\(2^4+(2.75+1.75) \div 0.9 \longrightarrow 21\)[/tex]