Melissa collected the data in the table.
\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & Given & Predicted & Residual \\
\hline
1 & 2 & 1 & 1 \\
\hline
2 & 3 & 4 & -1 \\
\hline
3 & 8 & 7 & 1 \\
\hline
4 & 9 & 10 & [tex]$?$[/tex] \\
\hline
\end{tabular}

When [tex]$x=4$[/tex], what is the residual?

A. [tex]$-3$[/tex]

B. [tex]$-1$[/tex]

C. 1

D. 3



Answer :

Sure, let's solve the problem step-by-step to find the residual when [tex]\( x = 4 \)[/tex].

Residual is calculated by subtracting the predicted value from the given value:

[tex]\[ \text{Residual} = \text{Given} - \text{Predicted} \][/tex]

For [tex]\( x = 4 \)[/tex]:
- Given value: [tex]\( 9 \)[/tex]
- Predicted value: [tex]\( 10 \)[/tex]

So, we substitute these values into the formula:

[tex]\[ \text{Residual} = 9 - 10 = -1 \][/tex]

Thus, the residual when [tex]\( x = 4 \)[/tex] is:
[tex]\[ -1 \][/tex]

So, the correct answer is:

[tex]\[ \boxed{-1} \][/tex]