Sure, let's solve the problem step-by-step to find the residual when [tex]\( x = 4 \)[/tex].
Residual is calculated by subtracting the predicted value from the given value:
[tex]\[ \text{Residual} = \text{Given} - \text{Predicted} \][/tex]
For [tex]\( x = 4 \)[/tex]:
- Given value: [tex]\( 9 \)[/tex]
- Predicted value: [tex]\( 10 \)[/tex]
So, we substitute these values into the formula:
[tex]\[ \text{Residual} = 9 - 10 = -1 \][/tex]
Thus, the residual when [tex]\( x = 4 \)[/tex] is:
[tex]\[ -1 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{-1} \][/tex]