\begin{tabular}{r}
[tex]$6y - 4 = 20$[/tex] \\
[tex]$+4 \quad +4$[/tex] \\
\hline [tex]$6y = 24$[/tex] \\
[tex]$\frac{6y}{6} = \frac{24}{6}$[/tex] \\
[tex]$y = 4$[/tex]
\end{tabular}



Answer :

Certainly! Let's solve the equation step-by-step:

### Step 1: Start with the Given Equation
[tex]\[ 6y - 4 = 20 \][/tex]

### Step 2: Add 4 to Both Sides
To isolate the term involving [tex]\( y \)[/tex], we add 4 to both sides of the equation:
[tex]\[ 6y - 4 + 4 = 20 + 4 \][/tex]
Simplifying both sides, we get:
[tex]\[ 6y = 24 \][/tex]

### Step 3: Divide Both Sides by 6
To solve for [tex]\( y \)[/tex], we need to divide both sides of the equation by 6:
[tex]\[ \frac{6y}{6} = \frac{24}{6} \][/tex]
Simplifying both sides, we get:
[tex]\[ y = 4 \][/tex]

So, the solution to the equation is:
[tex]\[ y = 4 \][/tex]

Let's summarize the entire process in the format provided:

[tex]\[ \begin{array}{r} 6y - 4 = 20 \\ +4 + 4 \\ \hline \\ 6y = 24 \\ \frac{6y}{6} = \frac{24}{6} \\ y = 4 \end{array} \][/tex]

This shows the complete step-by-step solution to the equation.