Given the equation:
[tex]\[
\begin{array}{r}
1.2x - 7.2x + 5 = -7 \\
-6x + 5 = -7 \\
-6x + 5 - 5 = -7 - 5 \\
-6x = -12 \\
-6x \cdot \frac{-1}{6} = -12 \cdot \frac{-1}{6}
\end{array}
\][/tex]
or
[tex]\[
\begin{array}{c}
\frac{-6x}{-6} = \frac{-12}{-6} \\
x = 2
\end{array}
\][/tex]

Solve for [tex]\( x \)[/tex].



Answer :

Certainly! Let's go through the steps to solve the equation [tex]\(1.2x - 7.2x + 5 = -7\)[/tex] in detail.

1. Combine like terms:
[tex]\[ 1.2x - 7.2x + 5 = -7 \][/tex]
Combine the [tex]\(1.2x\)[/tex] and [tex]\(-7.2x\)[/tex]:
[tex]\[ (1.2 - 7.2)x + 5 = -7 \][/tex]
[tex]\[ -6x + 5 = -7 \][/tex]

2. Isolate the variable term:
[tex]\[ -6x + 5 = -7 \][/tex]
Subtract 5 from both sides to move the constant term to the right side:
[tex]\[ -6x + 5 - 5 = -7 - 5 \][/tex]
Simplify:
[tex]\[ -6x = -12 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
[tex]\[ -6x = -12 \][/tex]
Divide both sides by [tex]\(-6\)[/tex] to isolate [tex]\(x\)[/tex]:
[tex]\[ \frac{-6x}{-6} = \frac{-12}{-6} \][/tex]
Simplify:
[tex]\[ x = 2 \][/tex]

Therefore, the solution to the equation [tex]\(1.2x - 7.2x + 5 = -7\)[/tex] is [tex]\(x = 2\)[/tex].