Simplify the expression using the order of operations.

[tex]\[
\begin{aligned}
(3 \times 2)^2 + 8 & = \square \\
\square^2 + 8 & = \square \\
\square + 8 & = \square
\end{aligned}
\][/tex]



Answer :

Certainly! Let's simplify the expression following the order of operations (parentheses, exponents, multiplication and division (from left to right), and finally addition and subtraction (from left to right)).

Given expression:
[tex]\[ (3 \times 2)^2 + 8 \][/tex]

Step-by-step solution:

1. Evaluate inside the parentheses:
[tex]\[ 3 \times 2 = 6 \][/tex]

So the expression now looks like:
[tex]\[ (6)^2 + 8 \][/tex]

2. Evaluate the exponentiation:
[tex]\[ 6^2 = 36 \][/tex]

So the expression now is:
[tex]\[ 36 + 8 \][/tex]

3. Add the final terms:
[tex]\[ 36 + 8 = 44 \][/tex]

So, the simplified expression is:
[tex]\[ (3 \times 2)^2 + 8 = 44 \][/tex]