Which of the following is equivalent to [tex]$8^{-5} \times 8^2$[/tex]?

A. [tex]$\frac{1}{8^3}$[/tex]
B. [tex][tex]$8^3$[/tex][/tex]
C. [tex]$\frac{1}{8^7}$[/tex]
D. [tex]$8^7$[/tex]



Answer :

To determine which of the following options is equivalent to [tex]\( 8^{-5} \times 8^2 \)[/tex], we will use the properties of exponents. Specifically, we will use the rule that states:

[tex]\[ a^m \times a^n = a^{m+n} \][/tex]

In this problem, we have:

[tex]\[ 8^{-5} \times 8^2 \][/tex]

Here, [tex]\( a = 8 \)[/tex], [tex]\( m = -5 \)[/tex], and [tex]\( n = 2 \)[/tex]. We apply the exponent rule:

[tex]\[ 8^{-5} \times 8^2 = 8^{-5 + 2} \][/tex]

Now, add the exponents:

[tex]\[ -5 + 2 = -3 \][/tex]

So the expression simplifies to:

[tex]\[ 8^{-3} \][/tex]

Next, recall that a negative exponent indicates a reciprocal. That is:

[tex]\[ 8^{-3} = \frac{1}{8^3} \][/tex]

Therefore, the expression [tex]\( 8^{-5} \times 8^2 \)[/tex] is equivalent to [tex]\(\frac{1}{8^3}\)[/tex].

The correct answer is:

A) [tex]\(\frac{1}{8^3}\)[/tex]