Answer :
Let's determine the correct function rule that matches the given (x, f(x)) pairs. Given the table:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -7 & -11 \\ \hline -1 & 1 \\ \hline 3 & 9 \\ \hline 4 & 11 \\ \hline 7 & 17 \\ \hline \end{array} \][/tex]
We need to check each proposed function rule to see which one correctly calculates [tex]\(f(x)\)[/tex] for all given x values.
### Checking [tex]\(f(x) = 3x + 10\)[/tex]
- When [tex]\(x = -7\)[/tex]:
[tex]\[ f(-7) = 3(-7) + 10 = -21 + 10 = -11 \][/tex]
Matches the table value.
- When [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = 3(-1) + 10 = -3 + 10 = 7 \][/tex]
Does not match the table value (table value is 1).
Since there is no match for [tex]\(x = -1\)[/tex], [tex]\(f(x) = 3x + 10\)[/tex] is not the correct function rule.
### Checking [tex]\(f(x) = 2x + 3\)[/tex]
- When [tex]\(x = -7\)[/tex]:
[tex]\[ f(-7) = 2(-7) + 3 = -14 + 3 = -11 \][/tex]
Matches the table value.
- When [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = 2(-1) + 3 = -2 + 3 = 1 \][/tex]
Matches the table value.
- When [tex]\(x = 3\)[/tex]:
[tex]\[ f(3) = 2(3) + 3 = 6 + 3 = 9 \][/tex]
Matches the table value.
- When [tex]\(x = 4\)[/tex]:
[tex]\[ f(4) = 2(4) + 3 = 8 + 3 = 11 \][/tex]
Matches the table value.
- When [tex]\(x = 7\)[/tex]:
[tex]\[ f(7) = 2(7) + 3 = 14 + 3 = 17 \][/tex]
Matches the table value.
Since all values match the table, [tex]\(f(x) = 2x + 3\)[/tex] is the correct function rule.
### Checking [tex]\(f(x) = 4x + 5\)[/tex]
- When [tex]\(x = -7\)[/tex]:
[tex]\[ f(-7) = 4(-7) + 5 = -28 + 5 = -23 \][/tex]
Does not match the table value (table value is -11).
Since there is no match for [tex]\(x = -7\)[/tex], [tex]\(f(x) = 4x + 5\)[/tex] is not the correct function rule.
### Checking [tex]\(f(x) = 3x - 10\)[/tex]
- When [tex]\(x = -7\)[/tex]:
[tex]\[ f(-7) = 3(-7) - 10 = -21 - 10 = -31 \][/tex]
Does not match the table value (table value is -11).
Since there is no match for [tex]\(x = -7\)[/tex], [tex]\(f(x) = 3x - 10\)[/tex] is not the correct function rule.
After checking all the function rules, we determine that the correct function that models the data given in the table is:
[tex]\[ f(x) = 2x + 3 \][/tex]
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -7 & -11 \\ \hline -1 & 1 \\ \hline 3 & 9 \\ \hline 4 & 11 \\ \hline 7 & 17 \\ \hline \end{array} \][/tex]
We need to check each proposed function rule to see which one correctly calculates [tex]\(f(x)\)[/tex] for all given x values.
### Checking [tex]\(f(x) = 3x + 10\)[/tex]
- When [tex]\(x = -7\)[/tex]:
[tex]\[ f(-7) = 3(-7) + 10 = -21 + 10 = -11 \][/tex]
Matches the table value.
- When [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = 3(-1) + 10 = -3 + 10 = 7 \][/tex]
Does not match the table value (table value is 1).
Since there is no match for [tex]\(x = -1\)[/tex], [tex]\(f(x) = 3x + 10\)[/tex] is not the correct function rule.
### Checking [tex]\(f(x) = 2x + 3\)[/tex]
- When [tex]\(x = -7\)[/tex]:
[tex]\[ f(-7) = 2(-7) + 3 = -14 + 3 = -11 \][/tex]
Matches the table value.
- When [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = 2(-1) + 3 = -2 + 3 = 1 \][/tex]
Matches the table value.
- When [tex]\(x = 3\)[/tex]:
[tex]\[ f(3) = 2(3) + 3 = 6 + 3 = 9 \][/tex]
Matches the table value.
- When [tex]\(x = 4\)[/tex]:
[tex]\[ f(4) = 2(4) + 3 = 8 + 3 = 11 \][/tex]
Matches the table value.
- When [tex]\(x = 7\)[/tex]:
[tex]\[ f(7) = 2(7) + 3 = 14 + 3 = 17 \][/tex]
Matches the table value.
Since all values match the table, [tex]\(f(x) = 2x + 3\)[/tex] is the correct function rule.
### Checking [tex]\(f(x) = 4x + 5\)[/tex]
- When [tex]\(x = -7\)[/tex]:
[tex]\[ f(-7) = 4(-7) + 5 = -28 + 5 = -23 \][/tex]
Does not match the table value (table value is -11).
Since there is no match for [tex]\(x = -7\)[/tex], [tex]\(f(x) = 4x + 5\)[/tex] is not the correct function rule.
### Checking [tex]\(f(x) = 3x - 10\)[/tex]
- When [tex]\(x = -7\)[/tex]:
[tex]\[ f(-7) = 3(-7) - 10 = -21 - 10 = -31 \][/tex]
Does not match the table value (table value is -11).
Since there is no match for [tex]\(x = -7\)[/tex], [tex]\(f(x) = 3x - 10\)[/tex] is not the correct function rule.
After checking all the function rules, we determine that the correct function that models the data given in the table is:
[tex]\[ f(x) = 2x + 3 \][/tex]