In which function is [tex]$x=2$[/tex] mapped to [tex]$32$[/tex]?

A. [tex]f(x) = -3x^2 - 4[/tex]
B. [tex]g(x) = 4(x+3)^2 - 68[/tex]
C. [tex]h(x) = 3x[/tex]
D. [tex]j(x) = 2x - 62[/tex]



Answer :

To determine which function maps [tex]\(x = 2\)[/tex] to 32, we'll substitute [tex]\(x = 2\)[/tex] into each function and evaluate the result.

1. Evaluate [tex]\(f(x)\)[/tex] at [tex]\(x = 2\)[/tex]:
[tex]\[ f(x) = -3x^2 - 4 \][/tex]
Substitute [tex]\(x = 2\)[/tex]:
[tex]\[ f(2) = -3(2)^2 - 4 = -3(4) - 4 = -12 - 4 = -16 \][/tex]
This does not map [tex]\(x = 2\)[/tex] to 32.

2. Evaluate [tex]\(g(x)\)[/tex] at [tex]\(x = 2\)[/tex]:
[tex]\[ g(x) = 4(x + 3)^2 - 68 \][/tex]
Substitute [tex]\(x = 2\)[/tex]:
[tex]\[ g(2) = 4(2 + 3)^2 - 68 = 4(5)^2 - 68 = 4(25) - 68 = 100 - 68 = 32 \][/tex]
This maps [tex]\(x = 2\)[/tex] to 32.

3. Evaluate [tex]\(h(x)\)[/tex] at [tex]\(x = 2\)[/tex]:
[tex]\[ h(x) = 3x \][/tex]
Substitute [tex]\(x = 2\)[/tex]:
[tex]\[ h(2) = 3(2) = 6 \][/tex]
This does not map [tex]\(x = 2\)[/tex] to 32.

4. Evaluate [tex]\(j(x)\)[/tex] at [tex]\(x = 2\)[/tex]:
[tex]\[ j(x) = 2x - 62 \][/tex]
Substitute [tex]\(x = 2\)[/tex]:
[tex]\[ j(2) = 2(2) - 62 = 4 - 62 = -58 \][/tex]
This does not map [tex]\(x = 2\)[/tex] to 32.

After evaluating each function, we see that only [tex]\(g(x)\)[/tex] maps [tex]\(x = 2\)[/tex] to 32. Thus, the function that maps [tex]\(x = 2\)[/tex] to 32 is:

[tex]\[ g(x) = 4(x + 3)^2 - 68 \][/tex]