What is the solution of the system of equations?

[tex]\[
\begin{array}{l}
y = 2x \\
y = x + 5
\end{array}
\][/tex]

A. [tex]\((5,10)\)[/tex]

B. [tex]\((0,5)\)[/tex]

C. [tex]\((2,7)\)[/tex]

D. [tex]\(\left(1 \frac{2}{3}, 6 \frac{2}{3}\right)\)[/tex]



Answer :

To solve the given system of equations, we need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations simultaneously. The system of equations is:

[tex]\[ \begin{array}{l} y = 2x \\ y = x + 5 \end{array} \][/tex]

Step-by-step solution:

1. Set the equations equal to each other since both are equal to [tex]\( y \)[/tex]:

[tex]\[ 2x = x + 5 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
- Subtract [tex]\( x \)[/tex] from both sides of the equation:

[tex]\[ 2x - x = 5 \][/tex]

- Simplify the equation:

[tex]\[ x = 5 \][/tex]

3. Substitute [tex]\( x = 5 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]. We can use either [tex]\( y = 2x \)[/tex] or [tex]\( y = x + 5 \)[/tex]. Let's use [tex]\( y = 2x \)[/tex]:

[tex]\[ y = 2(5) \][/tex]

4. Calculate [tex]\( y \)[/tex]:

[tex]\[ y = 10 \][/tex]

Therefore, the solution to the system of equations is:

[tex]\[ (x, y) = (5, 10) \][/tex]

So, the correct answer is:
A) [tex]\( (5, 10) \)[/tex]