Which of the following is the radical expression of [tex]$4 d^{\frac{3}{8}}$[/tex]?

A. [tex]4 \sqrt[8]{d^3}[/tex]
B. [tex]4 \sqrt[3]{d^8}[/tex]
C. [tex]\sqrt[8]{4 d^3}[/tex]
D. [tex]\sqrt[3]{4 d^8}[/tex]



Answer :

Let's find the radical form of the expression [tex]\(4 d^{\frac{3}{8}}\)[/tex].

1. The given expression is [tex]\(4 d^{\frac{3}{8}}\)[/tex].

2. To express [tex]\(d^{\frac{3}{8}}\)[/tex] in radical form, note that the exponent [tex]\(\frac{3}{8}\)[/tex] can be interpreted as taking the 8th root of [tex]\(d\)[/tex] raised to the 3rd power:
[tex]\[ d^{\frac{3}{8}} = (d^3)^{\frac{1}{8}} \][/tex]
This means we are taking the eighth root of [tex]\(d^3\)[/tex]:
[tex]\[ (d^3)^{\frac{1}{8}} = \sqrt[8]{d^3} \][/tex]

3. Now, incorporating the factor of 4 in the original expression [tex]\(4 d^{\frac{3}{8}}\)[/tex], we get:
[tex]\[ 4 d^{\frac{3}{8}} = 4 \sqrt[8]{d^3}. \][/tex]

Thus, the correct radical expression for [tex]\(4 d^{\frac{3}{8}}\)[/tex] is:
[tex]\[ 4 \sqrt[8]{d^3} \][/tex]

So, the choice that matches this expression is:
[tex]\[ 4 \sqrt[8]{d^3} \][/tex]

Therefore, the correct answer is:

[tex]\[ 1 \text{ ( } 4 \sqrt[8]{d^3} \text{ )} \][/tex]