4. A box has dimensions of 19 inches long, 1.7 feet wide, and 6 inches high. What is the volume of the box?

The formula for the volume is [tex]V = l \cdot w \cdot h[/tex].

A. 193.8 cubic inches [tex](in^3)[/tex]
B. 2325.6 cubic inches [tex](in^3)[/tex]
C. 5 cubic inches [tex](in^3)[/tex]
D. 16.15 cubic inches [tex](in^3)[/tex]



Answer :

To determine the volume of the box, we will follow these steps:

1. Identify the dimensions of the box:
[tex]\[ \text{Length} (l) = 19 \text{ inches} \][/tex]
[tex]\[ \text{Width} (w) = 1.7 \text{ feet} \][/tex]
[tex]\[ \text{Height} (h) = 6 \text{ inches} \][/tex]

2. Convert the width from feet to inches:
Since 1 foot is equal to 12 inches, we convert the width to inches by multiplying by 12:
[tex]\[ \text{Width in inches} = 1.7 \, \text{feet} \times 12 \, \text{inches/foot} = 20.4 \, \text{inches} \][/tex]

3. Calculate the volume using the formula [tex]\( V = l \cdot w \cdot h \)[/tex]:
Substituting the values we have:
[tex]\[ V = 19 \, \text{inches} \times 20.4 \, \text{inches} \times 6 \, \text{inches} \][/tex]

4. Multiply the dimensions to find the volume:
[tex]\[ V = 19 \times 20.4 \times 6 = 2325.6 \, \text{cubic inches} \][/tex]

Therefore, the volume of the box is:
[tex]\[ 2325.6 \, \text{cubic inches} \][/tex]

So, the correct answer is:
[tex]\[ 2325.6 \, \text{cubic inches} \][/tex]