Select the correct answer.

What is the solution for [tex] t [/tex] in the equation?

[tex] \frac{2}{3} t - \frac{1}{5} t = 2 [/tex]

A. [tex] t = 6 [/tex]
B. [tex] t = \frac{7}{30} [/tex]
C. [tex] t = \frac{30}{7} [/tex]
D. [tex] t = \frac{2}{3} [/tex]



Answer :

To solve the given equation:

[tex]\[ \frac{2}{3} t - \frac{1}{5} t = 2 \][/tex]

we proceed with the following steps:

1. First, combine the terms that contain [tex]\(t\)[/tex]. We need to find a common coefficient for [tex]\(t\)[/tex]:

[tex]\[ \left(\frac{2}{3} - \frac{1}{5}\right) t = 2 \][/tex]

2. Subtract the fractions:

To subtract [tex]\(\frac{1}{5}\)[/tex] from [tex]\(\frac{2}{3}\)[/tex], we'll need a common denominator. The common denominator of 3 and 5 is 15.

Convert each fraction:

[tex]\[ \frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15} \][/tex]

[tex]\[ \frac{1}{5} = \frac{1 \times 3}{5 \times 3} = \frac{3}{15} \][/tex]

Now subtract the fractions:

[tex]\[ \frac{10}{15} - \frac{3}{15} = \frac{10 - 3}{15} = \frac{7}{15} \][/tex]

3. Substitute back into the equation:

[tex]\[ \frac{7}{15} t = 2 \][/tex]

4. To solve for [tex]\(t\)[/tex], isolate [tex]\(t\)[/tex] by dividing both sides by [tex]\(\frac{7}{15}\)[/tex]:

[tex]\[ t = \frac{2}{\frac{7}{15}} \][/tex]

5. Dividing by a fraction is equivalent to multiplying by its reciprocal:

[tex]\[ t = 2 \times \frac{15}{7} = \frac{30}{7} \][/tex]

Thus, the solution for [tex]\(t\)[/tex] is:

[tex]\[ t = \frac{30}{7} \][/tex]

Hence, the correct answer is:

[tex]\[ \boxed{\frac{30}{7}} \][/tex]