Simplify [tex]$10 \sqrt{2 y} + 5 \sqrt{2 y} + 3 \sqrt{2 y}$[/tex].

A. [tex]$18 \sqrt{6 y}$[/tex]
B. [tex][tex]$18 \sqrt{2 y}$[/tex][/tex]
C. [tex]$12 \sqrt{2 y}$[/tex]
D. [tex]$18 \sqrt{6 y^3}$[/tex]



Answer :

Let's simplify the expression [tex]\(10 \sqrt{2y} + 5 \sqrt{2y} + 3 \sqrt{2y}\)[/tex] step by step.

1. Identify the like terms: In the expression [tex]\(10 \sqrt{2y} + 5 \sqrt{2y} + 3 \sqrt{2y}\)[/tex], all the terms contain the common factor [tex]\(\sqrt{2y}\)[/tex].

2. Combine the coefficients of like terms:
[tex]\[ (10 + 5 + 3) \sqrt{2y} \][/tex]

3. Perform the addition within the parentheses:
[tex]\[ 10 + 5 + 3 = 18 \][/tex]

4. Multiply the combined coefficient by the common factor:
[tex]\[ 18 \sqrt{2y} \][/tex]

Thus, the simplified form of the expression [tex]\(10 \sqrt{2y} + 5 \sqrt{2y} + 3 \sqrt{2y}\)[/tex] is [tex]\(18 \sqrt{2y}\)[/tex].

So, the correct answer is:
[tex]\[ \boxed{18 \sqrt{2y}} \][/tex]