Add the two functions.

[tex]\[
\begin{array}{l}
f(x) = 3x^3 + 7x - 26 \\
g(x) = x + 2
\end{array}
\][/tex]

Write your answer in the standard form of a polynomial.



Answer :

To add the two functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], we first need to look at their forms:

[tex]\[ f(x) = 3x^3 + 7x - 26 \][/tex]
[tex]\[ g(x) = x + 2 \][/tex]

Next, we will add them together:

[tex]\[ f(x) + g(x) = (3x^3 + 7x - 26) + (x + 2) \][/tex]

Combine the like terms. Let's break this down step-by-step:

1. Identify and combine the [tex]\(x^3\)[/tex] terms:
[tex]\[ 3x^3 \][/tex]
(No [tex]\(x^3\)[/tex] term from [tex]\(g(x)\)[/tex] to add)

2. Identify and combine the [tex]\(x\)[/tex] terms:
[tex]\[ 7x + x = 8x \][/tex]

3. Identify and combine the constant terms:
[tex]\[ -26 + 2 = -24 \][/tex]

Now, sum all the combined terms:

[tex]\[ 3x^3 + 8x - 24 \][/tex]

Thus, the simplified polynomial form of [tex]\( h(x) \)[/tex] after adding [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is:

[tex]\[ h(x) = 3x^3 + 8x - 24 \][/tex]