CR Algebra 1 A (GP) 24-25 / 1: Variable and Function Patterns

5. Write a function rule for the table.

\begin{tabular}{|l|l|}
\hline Hours Worked & Pay \\
\hline 2 & [tex]$\$[/tex] 11.50[tex]$ \\
\hline 4 & $[/tex]\[tex]$ 23.00$[/tex] \\
\hline 6 & [tex]$\$[/tex] 34.50[tex]$ \\
\hline 8 & $[/tex]\[tex]$ 46.00$[/tex] \\
\hline
\end{tabular}

A. [tex]\( h = 5.75 p \)[/tex]

B. [tex]\( p = 5.75 h \)[/tex]

C. [tex]\( p = 11.5 h \)[/tex]

D. [tex]\( p = h + 11.5 \)[/tex]



Answer :

To determine the function rule for the given table, we need to analyze how the pay corresponds to the hours worked.

Let's summarize the given data:

[tex]\[ \begin{array}{|c|c|} \hline \text{Hours Worked} & \text{Pay (\$)} \\ \hline 2 & 11.50 \\ \hline 4 & 23.00 \\ \hline 6 & 34.50 \\ \hline 8 & 46.00 \\ \hline \end{array} \][/tex]

We need to find a linear relationship of the form [tex]\( p = r \cdot h \)[/tex], where:
- [tex]\( p \)[/tex] is the pay.
- [tex]\( h \)[/tex] is the hours worked.
- [tex]\( r \)[/tex] is the pay rate per hour.

To find the pay rate ([tex]\( r \)[/tex]), we can use one of the data pairs. Let's use the first pair (2, 11.50):

[tex]\[ 11.50 = r \cdot 2 \][/tex]

Solving for [tex]\( r \)[/tex]:

[tex]\[ r = \frac{11.50}{2} \][/tex]
[tex]\[ r = 5.75 \][/tex]

So, the pay rate is [tex]\( 5.75 \)[/tex] dollars per hour.

Now we can write the function rule that describes this relationship:

[tex]\[ p = 5.75h \][/tex]

Next, let's verify that this rule works with the other data pairs:
1. For [tex]\( h = 4 \)[/tex]:
[tex]\[ p = 5.75 \cdot 4 \][/tex]
[tex]\[ p = 23.00 \][/tex]

2. For [tex]\( h = 6 \)[/tex]:
[tex]\[ p = 5.75 \cdot 6 \][/tex]
[tex]\[ p = 34.50 \][/tex]

3. For [tex]\( h = 8 \)[/tex]:
[tex]\[ p = 5.75 \cdot 8 \][/tex]
[tex]\[ p = 46.00 \][/tex]

Since the function rule [tex]\( p = 5.75h \)[/tex] fits all the data points correctly, this confirms that the rule is accurate.

Therefore, the correct function rule for the table is:

[tex]\[ p = 5.75h \][/tex]