Answer :

To evaluate the expression [tex]\( u + xy \)[/tex] given the values [tex]\( u = 18 \)[/tex], [tex]\( x = 10 \)[/tex], and [tex]\( y = 8 \)[/tex], follow these steps:

1. First, identify the values provided for each variable in the expression:
- [tex]\( u = 18 \)[/tex]
- [tex]\( x = 10 \)[/tex]
- [tex]\( y = 8 \)[/tex]

2. Next, compute the product [tex]\( xy \)[/tex]:
- [tex]\( x \cdot y = 10 \cdot 8 \)[/tex]
- [tex]\( 10 \cdot 8 = 80 \)[/tex]

3. Finally, add the result from the product to [tex]\( u \)[/tex]:
- [tex]\( u + xy = 18 + 80 \)[/tex]
- [tex]\( 18 + 80 = 98 \)[/tex]

So, the value of [tex]\( u + xy \)[/tex] is [tex]\( 98 \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{98} \][/tex]