Select the correct answer.

Two points located on [tex]\overleftarrow{JK}[/tex] are [tex]J(1, -4)[/tex] and [tex]K(-2, 8)[/tex]. What is the slope of [tex]\overleftarrow{JK}[/tex]?

A. -4
B. -2
C. [tex]-\frac{1}{4}[/tex]
D. [tex]\frac{1}{4}[/tex]
E. 4



Answer :

To determine the slope of the line passing through the points [tex]\( J(1, -4) \)[/tex] and [tex]\( K(-2, 8) \)[/tex], we follow these steps:

1. Identify the coordinates of the points:
- Point [tex]\( J \)[/tex] has coordinates [tex]\( (1, -4) \)[/tex].
- Point [tex]\( K \)[/tex] has coordinates [tex]\( (-2, 8) \)[/tex].

2. Recall the formula to calculate the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

3. Substitute the coordinates of points [tex]\( J \)[/tex] and [tex]\( K \)[/tex] into the formula:
- [tex]\( x_1 = 1 \)[/tex], [tex]\( y_1 = -4 \)[/tex]
- [tex]\( x_2 = -2 \)[/tex], [tex]\( y_2 = 8 \)[/tex]

[tex]\[ m = \frac{8 - (-4)}{-2 - 1} \][/tex]

4. Simplify the numerator and the denominator:
- Numerator: [tex]\( 8 - (-4) = 8 + 4 = 12 \)[/tex]
- Denominator: [tex]\( -2 - 1 = -3 \)[/tex]

5. Compute the slope by dividing the numerator by the denominator:
[tex]\[ m = \frac{12}{-3} = -4.0 \][/tex]

Thus, the slope of the line passing through points [tex]\( J \)[/tex] and [tex]\( K \)[/tex] is [tex]\(-4\)[/tex].

Therefore, the correct answer is:
A. -4