The formula for the volume, [tex]V[/tex], of a pyramid is [tex]V=\frac{1}{3} B h[/tex], where [tex]B[/tex] is the area of the base of the pyramid and [tex]h[/tex] is the pyramid's height. The base of the pyramid shown has a length of 9 m and a width of 8 m. The height of the pyramid is 12 m.

What is the volume of the pyramid?

A. [tex]136 \, \text{m}^3[/tex]
B. [tex]256 \, \text{m}^3[/tex]
C. [tex]288 \, \text{m}^3[/tex]
D. [tex]324 \, \text{m}^3[/tex]



Answer :

To solve the problem of finding the volume of the pyramid, we need to follow these steps:

1. Calculate the area of the base of the pyramid (B):

The base of the pyramid is rectangular in shape, so we use the formula for the area of a rectangle:
[tex]\[ B = \text{length} \times \text{width} \][/tex]

Given:
[tex]\[ \text{length} = 9 \, \text{m} \][/tex]
[tex]\[ \text{width} = 8 \, \text{m} \][/tex]

Plugging these values into the formula, we get:
[tex]\[ B = 9 \, \text{m} \times 8 \, \text{m} = 72 \, \text{m}^2 \][/tex]

2. Calculate the volume of the pyramid (V):

Now, we use the formula for the volume of a pyramid:
[tex]\[ V = \frac{1}{3} B h \][/tex]

Given:
[tex]\[ h = 12 \, \text{m} \][/tex]
[tex]\[ B = 72 \, \text{m}^2 \][/tex]

Plugging in these values, we get:
[tex]\[ V = \frac{1}{3} \times 72 \, \text{m}^2 \times 12 \, \text{m} \][/tex]

Simplifying this, we find:
[tex]\[ V = \frac{1}{3} \times 864 \, \text{m}^3 = 288 \, \text{m}^3 \][/tex]

Therefore, the volume of the pyramid is:
[tex]\[ 288 \, \text{m}^3 \][/tex]

So, the correct answer is:
C. [tex]\( 288 \, \text{m}^3 \)[/tex]