Solve for [tex]x[/tex].

[tex]\[
\frac{8x}{3} = \frac{56}{8}
\][/tex]

[tex]\[
\begin{array}{l}
5(-x + 3) + 3x + 5 = 22 \\
-5x + 15 + 3x + 5 = 22 \\
-2x + 20 = 22 \\
-2x = 2 \\
x = -1
\end{array}
\][/tex]



Answer :

Alright, let's solve each of the given equations step-by-step.

### First Equation:
[tex]\[ \frac{8x}{3} = \frac{56}{8} \][/tex]

To solve this equation for [tex]\( x \)[/tex], we first simplify the right-hand side:

[tex]\[ \frac{56}{8} = 7 \][/tex]

So the equation becomes:

[tex]\[ \frac{8x}{3} = 7 \][/tex]

Next, we solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]. We can do this by multiplying both sides of the equation by 3:

[tex]\[ 8x = 7 \cdot 3 \][/tex]
[tex]\[ 8x = 21 \][/tex]

Now, we divide both sides by 8:

[tex]\[ x = \frac{21}{8} \][/tex]

Simplifying this fraction, we get:

[tex]\[ x = 2.625 \][/tex]

So, the solution for the first equation is:

[tex]\[ x = 2.625 \][/tex]

### Second Equation:
[tex]\[ 5(-x + 3) + 3x + 5 = 22 \][/tex]

First, we'll distribute the 5 in the left-hand side:

[tex]\[ 5(-x) + 5(3) + 3x + 5 = 22 \][/tex]
[tex]\[ -5x + 15 + 3x + 5 = 22 \][/tex]

Next, we combine like terms:

[tex]\[ -5x + 3x + 20 = 22 \][/tex]
[tex]\[ -2x + 20 = 22 \][/tex]

To isolate [tex]\( x \)[/tex], we first subtract 20 from both sides:

[tex]\[ -2x = 22 - 20 \][/tex]
[tex]\[ -2x = 2 \][/tex]

Finally, we divide both sides by -2:

[tex]\[ x = \frac{2}{-2} \][/tex]
[tex]\[ x = -1 \][/tex]

So, the solution for the second equation is:

[tex]\[ x = -1 \][/tex]

### Summary of Solutions:

For the first equation [tex]\(\frac{8x}{3} = \frac{56}{8}\)[/tex], the solution is:
[tex]\[ x = 2.625 \][/tex]

For the second equation [tex]\(5(-x + 3) + 3x + 5 = 22\)[/tex], the solution is:
[tex]\[ x = -1 \][/tex]