Answered

Rewrite [tex]\(\frac{\frac{1}{4} \text{ barrel}}{\frac{2}{3} \text{ hour}}\)[/tex] as a unit rate.

A. [tex]\(\frac{1}{6}\)[/tex] barrel/hour
B. 6 barrels/hour
C. [tex]\(2 \frac{2}{3}\)[/tex] barrels/hour
D. [tex]\(\frac{3}{8}\)[/tex] barrel/hour



Answer :

To rewrite the fraction [tex]\(\frac{\frac{1}{4} \text{ barrel}}{\frac{2}{3} \text{ hour}}\)[/tex] as a unit rate, we follow these steps:

1. Identify the fraction to be rewritten as a unit rate.
Here, our fraction is [tex]\(\frac{\frac{1}{4} \text{ barrel}}{\frac{2}{3} \text{ hour}}\)[/tex].

2. Rewrite the fraction in terms of division:
[tex]\[ \frac{\frac{1}{4} \text{ barrel}}{\frac{2}{3} \text{ hour}} = \left( \frac{1}{4} \text{ barrel} \right) \div \left( \frac{2}{3} \text{ hour} \right) \][/tex]

3. To divide by a fraction, multiply by its reciprocal:
[tex]\[ = \left( \frac{1}{4} \text{ barrel} \right) \times \left( \frac{3}{2} \text{ hour}^{-1} \right) \][/tex]

4. Perform the multiplication:
[tex]\[ = \frac{1 \times 3}{4 \times 2} \text{ barrel/hour} \][/tex]

[tex]\[ = \frac{3}{8} \text{ barrel/hour} \][/tex]

So, the unit rate is [tex]\(\frac{3}{8} \text{ barrel/hour}\)[/tex], which corresponds to answer choice:

D. [tex]\(\frac{3}{8} \text{ barrel/hour}\)[/tex]

Therefore, the correct choice is:
D. [tex]\(\frac{3}{8} \text{ barrel/hour}\)[/tex]