Answered

Select the correct answer.

Consider the linear functions below.

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
\multirow{2}{*}{Function 1} & \multicolumn{2}{|c|}{Function 2} \\
\hline
& $x$ & $f(x)$ \\
\hline
\multirow{5}{*}{
\begin{tabular}{l}
$x$-intercept: $(3,0)$ \\
$y$-intercept: $(0,4)$
\end{tabular}
}
& -12 & -4 \\
\hline
& -8 & -1 \\
\hline
& -4 & 2 \\
\hline
& 0 & 5 \\
\hline
& 4 & 8 \\
\hline
\end{tabular}
\][/tex]

Find the slope of each function and determine which has the steeper slope.

A. Function 2 has a steeper slope of [tex]$\frac{3}{4}$[/tex].

B. Function 1 has a steeper slope of [tex]$\frac{4}{3}$[/tex].

C. Function 2 has a steeper slope of [tex]$-\frac{3}{4}$[/tex].

D. Function 1 has a steeper slope of [tex]$-\frac{4}{3}$[/tex].



Answer :

To determine which function has the steeper slope, we first need to find the slopes of both functions.

Step-by-Step Solution:

### Function 1:

1. Identify the Points:
- [tex]\(x\)[/tex]-intercept: [tex]\((3, 0)\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\((0, 4)\)[/tex]

2. Calculate the Slope: The slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m_1 = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

3. Substitute the Values:
- [tex]\( (x_1, y_1) = (3, 0) \)[/tex]
- [tex]\( (x_2, y_2) = (0, 4) \)[/tex]

Therefore,
[tex]\[ m_1 = \frac{4 - 0}{0 - 3} = \frac{4}{-3} = -\frac{4}{3} \][/tex]

### Function 2:

1. Select Two Points from the Table:
- Let's use [tex]\((-12, -4)\)[/tex] and [tex]\( (4, 8) \)[/tex].

2. Calculate the Slope: Using the formula for slope:
[tex]\[ m_2 = \frac{y_4 - y_3}{x_4 - x_3} \][/tex]

3. Substitute the Values:
- [tex]\( (x_3, y_3) = (-12, -4) \)[/tex]
- [tex]\( (x_4, y_4) = (4, 8) \)[/tex]

Therefore,
[tex]\[ m_2 = \frac{8 - (-4)}{4 - (-12)} = \frac{8 + 4}{4 + 12} = \frac{12}{16} = \frac{3}{4} \][/tex]

### Comparison of Slopes:

To determine which function has the steeper slope, compare the absolute values of the slopes.
- Slope of Function 1: [tex]\( -\frac{4}{3} \)[/tex] has an absolute value of [tex]\( \left|-\frac{4}{3}\right| = \frac{4}{3} \)[/tex].
- Slope of Function 2: [tex]\( \frac{3}{4} \)[/tex] has an absolute value of [tex]\( \left|\frac{3}{4}\right| = \frac{3}{4} \)[/tex].

Since [tex]\( \frac{4}{3} > \frac{3}{4} \)[/tex], Function 1 has the steeper slope.

### Conclusion:
- The slope of Function 1 is [tex]\( -\frac{4}{3} \)[/tex].
- The slope of Function 2 is [tex]\( \frac{3}{4} \)[/tex].
- Therefore, Function 1 has the steeper slope.

The correct answer is:
D. Function 1 has a steeper slope of [tex]\(-\frac{4}{3}\)[/tex].