Sure! Let's determine which of the given options is a proper fraction.
A proper fraction is a fraction where the numerator (the top number) is less than the denominator (the bottom number).
Let's analyze each option:
A. [tex]\( \frac{7}{6} \)[/tex]
- Numerator: 7
- Denominator: 6
- Since [tex]\( 7 > 6 \)[/tex], this is not a proper fraction.
B. [tex]\( \frac{4}{4} \)[/tex]
- Numerator: 4
- Denominator: 4
- Since [tex]\( 4 = 4 \)[/tex], this is not a proper fraction either.
C. [tex]\( \frac{3}{4} \)[/tex]
- Numerator: 3
- Denominator: 4
- Since [tex]\( 3 < 4 \)[/tex], this is a proper fraction.
D. [tex]\( \frac{4}{3} \)[/tex]
- Numerator: 4
- Denominator: 3
- Since [tex]\( 4 > 3 \)[/tex], this is not a proper fraction.
Therefore, the proper fraction among the given options is:
C. [tex]\( \frac{3}{4} \)[/tex]
So, the best answer is C. [tex]\( 3 / 4 \)[/tex].