Answer :

To solve the given system of equations:

[tex]\[ \begin{array}{l} 12x - 5y = -20 \\ y = x + 4 \\ \end{array} \][/tex]

Let's go through the steps to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

### Step 1: Substitute the second equation into the first equation

The second equation is:
[tex]\[ y = x + 4 \][/tex]

We substitute [tex]\( y \)[/tex] from the second equation into the first equation:

[tex]\[ 12x - 5(x + 4) = -20 \][/tex]

### Step 2: Simplify the equation

Now, distribute the [tex]\(-5\)[/tex] through the parentheses:

[tex]\[ 12x - 5x - 20 = -20 \][/tex]

Combine like terms:

[tex]\[ 7x - 20 = -20 \][/tex]

### Step 3: Solve for [tex]\( x \)[/tex]

Add [tex]\( 20 \)[/tex] to both sides of the equation:

[tex]\[ 7x = 0 \][/tex]

Divide by [tex]\( 7 \)[/tex]:

[tex]\[ x = 0 \][/tex]

### Step 4: Solve for [tex]\( y \)[/tex]

Now that we have [tex]\( x = 0 \)[/tex], we substitute this value back into the second equation to find [tex]\( y \)[/tex]:

[tex]\[ y = x + 4 \][/tex]

Substitute [tex]\( x = 0 \)[/tex]:

[tex]\[ y = 0 + 4 = 4 \][/tex]

### Conclusion

The solution to the system of equations is:

[tex]\[ x = 0 \\ y = 4 \][/tex]

So, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are:

[tex]\[ x = 0 \\ y = 4 \][/tex]